Chinese Journal of Electrical Engineering ›› 2018, Vol. 4 ›› Issue (2): 1-17.
Peng Han1, Ming Cheng1,*, Sul Ademi2, Milutin G. Jovanović3
Online:
2018-06-25
Published:
2019-10-31
Contact:
* , Email: mcheng@seu.edu.cn.
About author:
Peng Han (S'12-M'17) received the B.Sc. and Ph.D. degrees in Electrical Engineering from the School of Electrical Engineering, Southeast University, Nanjing, China, in 2012 and 2017, respectively. From November 2014 to November 2015, he was a joint Ph.D. student funded by China Scholarship Council with the Department of Energy Technology, Aalborg University, Aalborg, Denmark, where he focused on the brushless doubly-fed machines for wind energy conversion and high power drive. He is currently a Rsearch Scientist with the Center for High Performance Power Electronics (CHPPE), Department of Electrical and Computer Engineering, The Ohio State University. His current research interests include electric machines and power electronics. Ming Cheng (M'01-SM'02-F'15) received the B.Sc. and M.Sc. degrees in Electrical Engineering from the Department of Electrical Engineering, Southeast University, Nanjing, China, in 1982 and 1987, respectively, and the Ph.D. degree from the Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, in 2001. Since 1987, he has been with Southeast University, where he is currently a Chair Professor in the School of Electrical Engineering and the Director of the Research Center for Wind Power Generation. From January to April 2011, he was a Visiting Professor with the Wisconsin Electric Machine and Power Electronics Consortium, University of Wisconsin, Madison. His teaching and research interests include electrical machines, motor drives for electric vehicles, and renewable energy generation. He has authored or coauthored over 380 technical papers and 4 books and is the holder of over 100 patents in these areas. Prof. Cheng is a fellow of the Institution of Engineering and Technology. He has served as chair and organizing committee member for many international conferences. He is a Distinguished Lecturer of the IEEE Industry Applications Society(IAS) in 2015/2016. Sul Ademi (M'12) received the B.Eng. and Ph.D. degrees in Electrical and Electronics Engineering from Northumbria University at Newcastle upon Tyne, U.K., in 2011 and 2014, respectively. From 2015 to 2017, he was a Lead Researcher engaged in knowledge exchange and transfer partnership activities between University of Strathclyde, Glasgow, U.K and GE Grid Solutions, Stafford, U.K., where he focused on the development of novel DC protection schemes suitable for protecting future high-voltage direct current (HVDC) transmission systems. He is currently a Research Scientist with the Warwick Manufacturing Group, University of Warwick, Coventry, U.K. His main interests are in the areas of electric motor drives, validation of high-performance controllers for variable-speed applications, applications and control of doubly-fed machines, and design and analysis of novel permanent-magnet machines. Milutin G. Jovanovic (M'99-SM'05) received the Dipl.Eng and M.E.E. degrees from the University of Belgrade, Belgrade, Serbia, in 1987 and 1991, respectively, and the Ph.D. degree from the University of Newcastle, Callaghan, Australia, in 1997, all in Electrical Power Engineering. He is currently an Associate Professor with the Faculty of Engineering and Environment at Northumbria University, Newcastle upon Tyne, U.K. He has published more than 150 journal and conference papers including many book chapters. His major interests and activities are in the areas of reluctance machine drives, control and applications of doubly-fed motors and generators, and wind energy conversion systems.
Peng Han, Ming Cheng, Sul Ademi, Milutin G. Jovanović. Brushless Doubly-Fed Machines: Opportunities and Challenges[J]. Chinese Journal of Electrical Engineering, 2018, 4(2): 1-17.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] B. Hopfensperger,D. J. Atkinson, “Doubly-fed a.c.machines: classification and comparison, ”Proc. Eur. Power Electron. Drives,Graz, Austria, pp. 1-17, 2001. [2] P.C. Roberts,A Study of Brushless Doubly-Fed (Induction) Machines. Ph.D. thesis, Cambridge, U. K.:Univ. Cambridge, 2004. [3] M.G. Jovanović, “Sensored and sensorless speed control methods for brushless doubly fed reluctance motors,”IET Electr. Power Appl., vol.6, no.3, pp. 503-513, 2009. [4] F. Zhang, S. Yu,H. Wang, “Overview of research and development status of brushless doubly-fed machine system,”Ch. J. Electr. Eng., vol.2, no.2, pp.1-13, 2016. [5] M. Cheng, P. Han,W. Hua, “A general airgap field modulation theory for electrical machines,”IEEE Trans. Ind. Electron., vol.64, no.8, pp. 6063-6074, 2017. [6] L. J. Hunt, “A new type of induction motor,”Proc. IEE, vol.39, no.186, pp. 648-667, 1907. [7] M. Ruviaro, F.Runcos, N. Sadowski,I. M. Borges, “Analysis and test results of a brushless doubly-fed induction machine with rotary transformer,”IEEE Trans. Ind. Electron., vol.59, no.6, pp. 2670-2677, 2012. [8] A. R. W.Broadway, and L. Burbridge, “Self-cascaded machine: a low speed motor or high frequency brushless alternator,”Proc. IEE, vol.117, no.7, pp. 1277-1290, 1970. [9] A. R. W.Broadway, “Cageless induction machine,”Proc. IEE, vol.118, no.11, pp.1593-1600, 1971. [10] F. Zhang, G. Jia, Y. Zhao, Z, Yang, and W. Cao, “Simulation and experimental analysis of a brushless electrically excited synchronous machine with hybrid rotor,”IEEE Trans. Mag., vol.51, no.12,pp.1-7, Article #: 8115007, 2015. [11] S. Abdi, E. Abdi, A. Oraee,R. McMahon, “Optimization of magnetic circuit for brushless doubly fed machines,”IEEE Trans. Energy Convers., vol.33, no.4, pp. 1611-1620, 2015. [12] R. A.McMahon, P. C. Roberts, X. Wang, and P. J. Tavner, “Performance of BDFM as generator and motor,”IEE Electr. Power Appl., vol.153, no.2, pp. 289-299, 2006. [13] D. C. Ludois, J. K. Reed,K. Hanson, “Capacitive power transfer for rotor field current in synchronous machines, ”IEEE Trans. Power Electron., vol.27, no.11, pp. 4638-4645, 2012. [14] N. U. R.Malik, and C. Sadarangani, “Brushless doubly-fed induction machine with rotating power electronic converter for power applications,”Proc. Int. Conf. Electr. Mach. Syst., Beijing, China, pp. 1-6, Aug. 2011. [15] B. H. Smith, “Synchronous behavior of doubly fed twin stator induction machine,”IEEE Trans. Power Apparat.Syst., vol.PAS-86, no.10, pp. 1227-1236, 1967. [16] B. Hopfensperger, D. J. Atkinson,R. A. Lakin, “Steady state of the cascaded doubly-fed induction machine,”Eur. Trans. Electr. Power, vol.12, no.6, pp. 427-437, 2002. [17] P. Han, M. Cheng,R. Luo, “Design and analysis of a brushless doubly-fed induction machine with dual-stator structure,”IEEE Trans. Energy Convers., vol.31, no.3, pp. 1132-1141, 2016. [18] S. Abdi, E. Abdi,R. A.McMahon, “A study of unbalanced magnetic pull in brushless doubly fed machines,”IEEE Trans. Energy Convers., vol.30, no.3, pp. 1218-1227, 2015. [19] L. Han, X. Ou, J. Du, X. Han,Y. Guo, “Study of direct coupling in stator dual windings of brushless doubly-fed machine,”IEEE Trans. Energy Convers., vol.32, no.3, pp. 974-982, 2017. [20] S. Williamson, A. C. Ferreira,A. K. Wallace, “Generalised theory of the brushless doubly-fed machine. part 1: analysis, ”IEE. Proc.-Electr. Power Appl., vol.144, no.2, pp.111-121, 1997. [21] H. Gorginpour, B. Jandaghi,H. Oraee, “A novel rotor configuration for brushless doubly-fed induction generators,”IET Electr. Power Appl., vol.7, no.2, pp. 106-115, 2013. [22] F. Xiong,X. Wang, “Design of a low-harmonic-content wound rotor for the brushless doubly fed generator,”IEEE Trans. Energy Convers., vol.29, no.1, pp. 158-168, 2014. [23] R. A.McMahon, P. Tavner, E. Abdi, P. Malliband, and D. Barker, “Characterising brushless doubly fed machine rotors,”IET Electr. Power Appl., vol.3, no.7, pp. 535-543, 2013. [24] A. Oraee, E. Abdi, S. Abdi, R. McMahon,P. J. Tavner, “Effects of rotor winding structure on the BDFM equivalent circuit parameters, ”IEEE Trans. Energy Convers., vol.30, no.4, pp. 1660-1669, 2015. [25] L. Jia,X. Wang, “A comparison of the wound rotor and nested?loop rotor brushless doubly fed generator, ”IEE J. Trans. Electr. Electron. Eng., vol.12, no.2, pp. 273-283, 2017. [26] S. Williamson,M. S. Boger, “Impact of inter-bar currents on the performance of the brushless doubly fed motor,”IEEE Trans. Ind. Appl., vol.35, no.2, pp. 453-460, 1999. [27] Y. Liao, L. Xu,L. Zhen, “Design of a doubly fed reluctance motor for adjustable-speed drives,”IEEE Trans. Ind. Appl., vol.32, no.5, pp.1195-1203, 1996. [28] I. Scian, D. G. Dorrell,P. J. Holik, “Assessment of losses in a brushless doubly-fed reluctance machine,”IEEE Trans. Magn., vol.42, no.10, pp.3425-3427, 2006. [29] T. Fukami, M. Momiyama,K. Shima, “Steady-state analysis of a dual-winding reluctance generator with a multiple-barrier rotor,”IEEE Trans. Energy Convers., vol.23, no.2, pp.492-498, 2008. [30] L. Xu, Y. Tang,L. Ye, “Comparison study of rotor structures of doubly excited brushless reluctance machine by finite element analysis,”IEEE Trans. Energy Convers., vol.9, no.1, pp.165-172, 1994. [31] L. Xu,F. Wang, “Comparative study of magnetic coupling for a doubly fed brushless machine with reluctance and cage rotors,”Rec. Ind. Appl. Soc. Annu. Meeting, New Orleans, LA, USA, pp. 326-332, Oct. 1997 . [32] E. Schulz,R. E. Betz, “Optimal rotor design for brushless doubly fed reluctance machines,”Rec. Ind. Appl. Soc. Annu. Meeting, Salt Lack City, USA, pp. 256-261, Oct. 2003 . [33] S. Khaliq, M. Modarres, T. A. Lipo,B. I. Kwon, “Design of novel axial flux dual stator doubly fed reluctance machine,”IEEE Trans. Magn., vol.51, no.11, pp.1-4, 2015. [34] F. Zhang, L. Zhu, S. Jin, X. Su, S. Ademi,W. Cao, “Controller strategy for open-winding brushless doubly-fed wind power generator with common mode voltage elimination,”IEEE Trans. Ind. Electron., vol.PP, no.99, DOI: 10.1109/ TIE.2018.2811370, 2018. [35] F. Blázquez, C. Veganzones,D. Ramírez, “Characterization of the rotor magnetic field in a brushless doubly-fed induction machine,”IEEE Trans. Energy Convers., vol.24, no.3, pp. 599-607, 2009. [36] X. Chen,X. Wang, “Proximate standing wave feature of magnetic field and its influence on the performance of wound rotor brushless doubly-fed machine,”IEEE Trans. Energy Convers., vol.32, no.1, pp. 296-308, 2017. [37] A. C. Ferreira,S. Williamson, “Time-stepping finiteelement analysis of brushless doubly fed machine taking iron loss and saturation into account,”IEEE Trans. Ind. Appl., vol.35, no.3, pp. 583-588, 1999. [38] H. Gorginpour, H. Oraee,R. A.McMahon, “Performance description of brushless doubly-fed induction machine in its asynchronous and variable speed synchronous modes,”J. Electromag. Analy. Appl., vol.3, no.12, pp.490-511, 2011. [39] P. Han, M. Cheng, Y. Jiang, Z. Chen, “Torque/power density optimization of a dual-stator brushless-doubly-fed induction generator for wind power application,”IEEE Trans. Ind. Electron., vol.64, no.2, pp. 9864-9875, 2017. [40] M. Hsieh, I. H. Lin,D. G. Dorrell, “Magnetic circuit modeling of brushless doubly-fed machines with induction and reluctance rotors,”IEEE Trans. Magn., vol.49, no.5, pp. 2359-2362, 2013. [41] H. Gorginpour, H. Oraee,R. A.McMahon, “A novel modeling approach for design studies of brushless doubly fed induction generator based on magnetic equivalent circuit,”IEEE Trans. Energy Convers., vol.28, no.4, pp. 902-912, 2013. [42] H. Gorginpour, H. Oraee,R. A.McMahon, “Electromagneticthermal design optimization of the brushless doubly fed induction generator,”IEEE Trans. Ind. Electron., vol.61, no.4, pp. 1710-1721, 2014. [43] X. Wang, T. D. Strous, D. Lahaye, H. Polinder,J. A. Ferreira, “Modeling and optimization of brushless doubly-fed induction machines using computationally efficient finite-element analysis,”IEEE Trans. Ind. Appl., vol.52, no.6, pp. 4525-4534, 2016. [44] N. Chilakapati, V. S. Ramsden,V. Ramaswamy, “Investigation of doubly fed twin stator induction motor as a variable speed drive, ”Proc. Int. Conf. Power Electron. Drives Energy Syst. Ind. Growth, Perth, Australia, pp. 160-165, Dec. 1998. [45] P. Han, M. Cheng, X. Wei,Y. Jiang, “Steady-state characteristics of the dual-stator brushless doubly-fed induction generator,”IEEE Trans. Ind. Electron., vol.65, no.1, pp. 200-210, 2018. [46] P. C. Roberts, R. A.McMahon, P. J. Tavner, “Equivalent circuit for the brushless doubly fed machine (BDFM) including parameter estimation and experimental verification, ”IEE Electr. Power Appl., vol.152, no.4, pp. 933-942, 2005. [47] S. Tohidi, “Analysis and simplified modelling of brushless doubly-fed induction machine in synchronous mode of operation,”IET Electr. Power Appl., vol.10, no.2, pp. 110-116, 2016. [48] M. Hashemnia, F. Tahami,E. Oyarbide, “Investigation of core loss effect on steady-state characteristics of inverter fed brushless doubly fed machines,”IEEE Trans. Energy Convers., vol.29, no.1, pp. 57-64, 2014. [49] S. Abdi, E. Abdi, A. Oraee,R. McMahon, “Equivalent circuit parameters for large brushless doubly fed machines (BDFMs),”IEEE Trans. Energy Convers., vol.29, no.3, pp. 706-715, 2014. [50] R. A.McMahon, P. C. Roberts, M. Tatlow, and E. Abdi, “Rotor parameter determination of the brushless doubly fed (induction) machine,”IET Electr. Power Appl., vol.9, no.8, pp. 549-555, 2015. [51] J. Poza,Modélisation, Conception et Commande d'une Machine Asynchrone sans Balais Doublement Alimentée pour la Génération à Vitesse Variable. Ph.D. thesis, France:Institut National Polytechnique de Grenoble, 2003. [52] A. Ramchandran, G. C. Alexander, “Frequency-domain parameter estimation for the brushless doubly-fed machine,”Proc. Power Convers. Conf., Yokohama, Japan, pp. 346-351, Apr. 1993. [53] H. Djadi, K. Yazid, M. Menaa, “Parameters identification of a brushless doubly fed induction machine using pseudo-random binary signal excitation for recursive least squares method,”IET Electr. Power Appl., vol.11, no.9, pp. 1585-1595, 2017. [54] J. Su, Y. Chen, L. Sun, X. Liu,Y. Kang, “Parameter estimation of brushless doubly-fed induction generator based on steady experimental results,”Proc. IEEE Energy Convers. Congr. Expo., Montreal, Canada, Sep. pp. 2800-2804, 2015. [55] D. Gay, R. Betz, D. G.Dorrell,A. M. Knight, “Brushless doubly fed reluctance machine parameter determination,”Proc. Int. Conf. Electr. Mach. Syst.,Sydney, Australia, pp.1-6, Aug.2017. [56] G. Esfandiari, M. Ebrahimi, A. Tabesh,M. Esmaeilzadeh, “Dynamic modeling and analysis of cascaded DFIMs in an arbitrary reference frame,”IEEE Trans. Energy Convers., vol.30, no.3, pp.999-1007, 2015. [57] R. Li, A. K.Wallace,R. Spée, “Two-axis model development of cage rotor brushless doubly-fed machines, ”IEEE Trans. Energy Convers., vol.6, no.3, pp.453-460, 1991. [58] D. Zhou, R. Spée,G. C. Alexander, “Experimental evaluation of a rotor flux oriented control algorithm for brushless doubly-fed machines,”IEEE Trans. Power Electron., vol.12, no.1, pp. 72-78, 1997. [59] M. S. Boger, A. K.Wallace,R. Spée, “General pole number model of the cage-rotor brushless doubly-fed machine,”IEEE Trans. Ind. Appl., vol.31, no.5, pp.1022-1028, 1995. [60] P. C. Roberts, T. Long,R. A.McMahon,“Dynamic modelling of the brushless doubly fed machine,”IET Proc. -Electr. Power Appl., vol.7, no.7, pp. 544-556, 2013. [61] J. Poza, E. Oyarbide,I. Sarasola, “Vector control design and experimental evaluation for the brushless doubly fed machine, ”IET Proc.-Electr. Power Appl., vol.3, no.4, pp. 247-256, 2009. [62] S. Shao, E. Abdi,F. Barati, “Stator-flux-oriented vector control for brushless doubly fed induction generator,”IEEE Trans. Ind. Electron., vol.56, no.10, pp. 4220-4228, 2009. [63] F. Barati, S. Shao, E. Abdi, H. Oraee,R. McMahon, “Generalized vector model for the brushless doubly-fed machine with a nested-loop rotor,”IEEE Trans. Ind. Electron., vol.58, no.6, pp.2313-2321, 2011. [64] F. Liang, L. Xu,T. A. Lipo, “D-q analysis of a variable speed doubly ac excited reluctance motor,”Electr. Mach. Power Syst., vol.19, no.2, pp.125-138, 1990. [65] L. Xu, F. Liang,T. A. Lipo, “Transient model of a doubly excited reluctance motor, ”IEEE Trans. Energy Convers., vol.6, no.1, pp. 126-133, 1991. [66] R. E. Betz,M. G. Jovanović, “Introduction to the space vector modelling of the brushless doubly-fed reluctance machine,”Electr. Power Compon. Syst., vol.31, no.8, pp. 729-755, 2003. [67] N. Patin, E. Monmasson,J. Louis, “Modeling and control of a cascaded doubly fed induction generator dedicated to isolated grids,”IEEE Trans. Ind. Electron., vol.56, no.10, pp. 4207-4219, 2009. [68] P. Han, M. Cheng, X. Wei,N. Li, “Modeling and performance analysis of a dual-stator brushless doubly fed induction machine based on spiral vector theory,”IEEE Trans. Ind. Appl., vol.52, no.2, pp.1380-1389, 2016. [69] S. Tohidi, M. Zolghadri, H. Oraee,P. Tavner, “Performance of the brushless doubly-fed machine under normal and fault conditions,”IET Electr. Power Appl., vol.6, no.9, pp. 621-627, 2012. [70] F. Wang, F. Zhang,L. Xu, “Parameter and performance comparison of doubly fed brushless machine with cage and reluctance rotors,”IEEE Trans. Ind. Appl., vol.38, no.5, pp.1237-1243, 2002. [71] S. Shao, E. Abdi,R. A.McMahon, “Low-cost variable speed drive based on a brushless doubly-fed motor and a fractional unidirectional converter,”IEEE Trans. Ind. Electron., vol.59, no.1, pp. 317-325, 2012. [72] M. Kong, X. Wang, Z. Li,P. Nie, “Asynchronous operation characteristics and soft-starting method for the brushless doubly-fed motor,”IET Electr. Power Appl., vol.11, no.7, pp. 1276-1283, 2017. [73] P. Han, M. Cheng,Z. Chen, “Single-electrical-port control of cascaded doubly-fed induction machine for EV/HEV applications,”IEEE Trans. Power Electron., vol.32, no.9, pp. 7233-7243, 2017. [74] P. Han, M. Cheng,Z. Chen, “Dual-electrical-port control of cascaded brushless doubly-fed induction drive for EV/HEV applications,”IEEE Trans. Ind. Appl., vol.53, no.2, pp.1390-1398, 2017. [75] R. S. Rebeiro,A. M. Knight, “Two converter based operation of a brushless doubly fed reluctance machine, ”Proc. IEEE Energy Convers. Congr. Expo., Pittsburgh, PA, USA, pp. 1400-1407, Sep. 2014 . [76] R. S. Rebeiro,A. M. Knight, “Comparison of operating modes for a brushless doubly fed reluctance motor drive,”Proc. IEEE Energy Convers. Congr. Expo., Cincinnati, OH, pp. 1323-1330, Oct. 2017. [77] L. Ou, X. Wang, F. Xiong,C.Ye, “Reduction of torque ripple in a wound-rotor brushless doubly-fed machine by using the tooth notching,”IET Eletr. Power Appl., vol.12, no.5, pp. 635-642, 2018. [78] P. Han, M. Cheng, X. Zhu,Z. Chen, “Multifrequency spiral vector model for the brushless doubly-fed induction machine,”Proc. IEEE Electr. Mach. Drives Conf., Miami, FL, USA, pp. 1-8, May 2017. [79] E. Abdi, P. Malliband,R. A.McMahon, “Study of iron saturation in brushless doubly-fed induction generators,”Proc. Energy Convers. Congr. Expo., Atlanta, GA, USA, pp. 3501-3508, Sep. 2010. [80] H. Gorginpour, H. Oraee, E. Abdi, “Calculation of core and stray load losses in brushless doubly fed induction generators,”IEEE Trans. Ind. Electron., vol.61, no.7, pp. 3167-3177, 2014. [81] F. Runcos, R. Carlson, N. Sadowski, P. Kuo-Peng,H. Voltolini, “Performance and vibration analysis of a 75kW brushless doubly-fed induction generator prototype,”Proc. Ind. Appl. Soc. Annu. Meeting, Tampa, USA, pp. 2395-2402, Oct. 2006. [82] T. Logan, R. A.McMahon, and K. Seffen, “Noise and vibration in brushless doubly fed machine and brushless doubly fed reluctance machine,”IET Electr. Power Appl., vol.8, no.2, pp. 50-59, 2014. [83] C. D. Cook,B. H. Smith, “Stability and stabilization of doubly-fed single-frame cascaded induction machines,”Proc. IEE, vol.126, no.11, pp. 1168-1174, 1979. [84] C. D. Cook,B. H. Smith, “Effects of machine parameter values on dynamic response and stability regions of doubly-fed cascade induction machines,”Proc. IEE, vol.130-part B, no.2, pp. 137-142, 1983. [85] J. Poza, E. Oarbide, D. Roye,I. Sarasola, “Stability analysis of a BDFM under open-loop voltage control,”Proc. Eur. Conf. Power Electr. Appl., Dresden, Germany, pp. P1-P10, Sep. 2005. [86] Y. Tang,L. Xu, “Stability analysis of a slip power recovery system under open loop and field oriented control,”Rec. Ind. Appl. Soc. Annu. Meeting, Toronto, Canada, pp. 558-564, Oct. 1993. [87] A. Kusko,C. B. Somuah, “Speed control of a single-frame cascade induction motor with slip power pump back,”IEEE Trans. Ind.Appl., vol.IA-14, no.2, pp. 97-105, 1978. [88] D. Zhou, R. Spée,A. K.Wallace, “Laboratory control implementation for doubly fed machines,”Proc. Int. Conf. Ind. Electron. Contr. Instr., Maui, USA, pp. 1181-1186, Nov. 1993. [89] M. G. Jovanović, R. E. Betz,J. Yu, “The use of doubly-fed reluctance machines for large pumps and wind turbines,”IEEE Trans. Ind. Appl., vol.38, no.6, pp. 1508-1516, 2002. [90] I. Sarasola, J. Poza, E. Oyarbide,M. A. Rodriguez, “Stability analysis of a brushless doubly-fed machine under closed loop scalar current control,”Proc. Ind. Electron. Conf., Paris, France, pp. 1527-1532, Nov. 2006. [91] B. Hopfensperger, D. J. Atkinson,R. A. Lakin, “Stator flux oriented control of a cascaded doubly-fed induction machine, ”IEE Proc.-Electr. Power Appl., vol.146, no.6, pp. 597-605, 1999. [92] D. Basic, J. Zhu,G. Boardman, “Transient performance study of a brushless doubly fed twin stator induction generator,”IEEE Trans. Energy Convers., vol.18, no.3, pp.400-408, 2003. [93] K. Protsenko,D. Xu, “Modeling and control of brushless doubly fed induction generators in wind energy applications,”IEEE Trans. Power Electron., vol.23, no.3, pp. 1191-1197, 2008. [94] M. Cheng, R. Luo,X. Wei, “Design and analysis of current control methods for brushless doubly-fed induction machines,”IEEE Trans. Ind. Electron., DOI: 10.1109/TIE.2018.2829688. [95] B. Hopfensperger, D. J. Atkinson,R. A. Lakin, “Combined magnetizing flux oriented control of the cascaded doubly-fed induction machine,”IEE Proc.-Electr. Power Appl., vol.148, no.4, pp. 354-362, 2001. [96] G. Esfandiari, M. Ebrahimi,A. Tabesh, “Instantaneous torque control method with rated torque sharing ratio for cascaded DFIMs,”IEEE Trans. Power Electron., vol.32, no.11, pp. 8671-8680, 2017. [97] L. Xu, L. Zhen,E. Kim, “Field orientation control of a doubly excited brushless reluctance machine,”IEEE Trans. Ind. Appl., vol.34, no.1, pp. 148-155, 1998. [98] S. Ademi,M. G. Jovanović, “Vector control methods for brushless doubly fed reluctance machines,”IEEE Trans. Ind. Electron., vol.62, no.1, pp. 96-104, 2015. [99] S. Ademi, M. G. Jovanović,M. Hasan, “Control of brushless doubly-fed reluctance generators for wind energy conversion systems,”IEEE Trans. Energy Convers., vol.30, no.2, pp. 596-604, 2015. [100] Y. Zhang,J. G. Zhu, “Direct torque control of cascaded brushless doubly fed induction generator for wind energy applications,”Proc. Int. Electr. Mach. Drives Conf., Niagara, ON, Canada, pp. 741-746, May 2011. [101] J. Hu, J. Zhu,D. G. Dorrell, “A new control method of cascaded brushless doubly fed induction generators using direct power control,”IEEE Trans. Energy Convers., vol.29, no.3, pp. 771-779, 2014. [102] A. Broekhof, M. Tatlow,R. McMahon, “Vector-controlled grid synchronization for the brushless doubly-fed induction generator,”Proc. IET Int. Conf. Power Electron. Mach. Drives, Manchester, UK, pp. 1-5, Apr. 2014. [103] R. Sadeghi, S. M. Madani,M. Ataei, “A new smooth synchronization of brushless doubly-fed induction generator by applying a proposed machine model,”IEEE Trans. Sustain. Energy, vol.9, no.1, pp. 371-380, 2018. [104] W. R. Brassfield, R. Spée,T. G. Habetler, “Direct torque control for brushless doubly-fed machines,”IEEE Trans. Ind. Appl., vol.32, no.5, pp. 1098-1104, 1996. [105] I. Sarasola, J. Poza,M. A. Rodriguez, “Direct torque control design and experimental evaluation for the brushless doubly fed machine,”Energy Convers. and Manage., vol.52, no.2, pp. 1226-1234, 2011. [106] M. G. Jovanović, J. Yu,E. Levi, “Encoderless direct torque controller for limited speed range applications of brushless doubly fed reluctance motors,”IEEE Trans. Ind. Appl., vol.42, no.3, pp. 712-722, 2006. [107] W. K. Song,D. G. Dorrell, “Implementation of improved direct torque control method of brushless doubly-fed reluctance machines for wind turbine, ”Proc. IEEE Int. Conf. Ind. Tech., Busan, Korea, pp.509-513, Feb./Mar. 2014. [108] A. Zhang, X. Wang, W. Jia,Y. Ma, “Indirect statorquantities control for the brushless doubly fed induction machine,”IEEE Trans. Power Electron., vol.29, no.3, pp. 1392-1401, 2014. [109] R. Zhao, A. Zhang, Y. Ma, X. Wang,J. Yan, “The dynamic control of reactive power for the brushless doubly fed induction machine with indirect stator-quantities control scheme,”IEEE Trans. Power Electron., vol.30, no.9, pp. 5046-5057, 2015. [110] G. Zhang, J. Yang, Y. Sun, M. Su,W. Tang “A robust control scheme based on ISMC for the brushless doubly fed induction machine,”IEEE Trans. Power Electron., DOI: 10.1109/TPEL.2017.2708741, 2017. [111] R. Sadeghi, S. M. Madani, M. Ataei, M. R. A.Kashkooli, and S. Ademi, “Super-twisting sliding mode direct power control of brushless doubly fed induction generator,”IEEE Trans. Ind. Electron., DOI: 10.1109/TIE.2018.2818672, 2018. [112] X. Wei, J. Zhu, M. Cheng, H. Yang,B. Ma, “Model predictive control of brushless doubly fed twin stator induction machine: a model reduction approach,”Proc. Int. Conf. Electr. Mach. Syst., Sydney, Australia, pp. 1-6, Aug. 2017. [113] S. Shao, T. Long, E. Abdi,R. A.McMahon, “Dynamic control of the brushless doubly fed induction generator under unbalanced operation,”IEEE Trans. Ind. Electron., vol.60, no.6, pp. 2465-2476, 2013. [114] J. Chen, W. Zhang, B. Chen,Y. Ma, “Improved vector control of brushless doubly fed induction generator under unbalanced grid conditions for offshore wind power generations,”IEEE Trans. Energy Convers., vol.31, no.1, pp. 293-302, 2016. [115] I. A. Gowaid, A. S.Abdel-Khalik, A. M. Massoud, and S. Ahmed, “Ride-through capability of grid-connected brushless cascade DFIM wind turbines in faulty grid conditions - a comparative study,”IEEE Trans. Sustain. Energy, vol.4, no.4, pp. 1002-1015, 2013. [116] T. Long, S. Shao, P. Malliband, E. Abdi,and R. A.McMahon, “Crowbarless fault ride-through of the brushless doubly fed induction generator in a wind turbine under symmetrical voltage dips,”IEEE Trans. Ind. Electron., vol.60, no.7, pp. 2833-2841, 2013. [117] T. Long, S. Shao, E. Abdi, R. A.McMahon,and S. Liu, “Asymmetrical low-voltage ride through of brushless doubly fed induction generators for the wind power generation,”IEEE Trans. Energy Convers., vol.28, no.3,pp.502-511, 2013. [118] A. Oraee, E. Abdi,R. A.McMahon, “Converter rating optimization for a brushless doubly-fed induction generator,”IET Renew. Power Gen., vol.9, no.4, pp. 360-367, 2015. [119] M. Gholizadeh, A. Oraee, S. Tohidi, H. Oraee,R. A.McMahon, “An analytical study for low voltage ride through of the brushless doubly-fed induction generator during asymmetrical voltage dips, ”Renew. Energy, vol.115, pp. 64-75, 2018. [120] S. Tohidi, H. Oraee,M. R. Zolghadri, “Analysis and enhancement of low-voltage ride-through capability of brushless doubly fed induction generator,”IEEE Trans. Ind. Electron., vol.60, no.3, pp.1146-1155, 2013. [121] R. Gao, A. Zhang, S. Wang,Z. Chen, “Improved crowbarless LVRT control strategy based on flux linkage tracking for brushless doubly fed induction generator,”Proc. IEEE Annu. Southern Power Electron. Conf., Auckland, New Zealand, pp. 1-7, Dec. 2016. [122] X. Chen, X. Wang,F. Xiong, “Research on excitation control for stand-alone wound rotor brushless doubly-fed generator system,”Proc. Int. Conf. Electr. Mach. Syst., Busan, South Korea, pp. 663-667, Oct. 2013. [123] X. Chen, Z. Wei,X. Gao, “Research of voltage amplitude fluctuation and compensation for wound rotor brushless doubly-fed machine,”IEEE Trans. Energy Convers., vol.30, no.3, pp. 908-917, 2015. [124] M. Lu, Y. Chen, L. Sun, X. Zou,Y. Kang, “Control winding quantities orientation modeling and control for stand-alone brushless doubly-fed power generation system,”Proc. IEEE Energy Convers. Congr. Expo., Montreal, Canada, pp. 2828- 2833, Sep.2015. [125] Y. Liu, W. Ai,B. Chen, “Control design and experimental verification of the brushless doubly-fed machine for stand-alone power generation applications,”IET Electr. Power Appl., vol.10, no.1, pp. 25-35, 2016. [126] L. Sun, Y. Chen, J. Su. D.Zhang, and L. Peng, “Decoupling network design for inner current loops of stand-alone brushless doubly-fed induction generation power system, ”IEEE Trans. Power Electron., vol.33, no.2, pp. 957-963, 2018. [127] L. Sun, Y. Chen, L. Peng,Y. Kang, “Numerical-based frequency domain controller design for stand-alone brushless doubly fed induction generator power system,”IET Power Electron., vol.10, no.5, pp. 588-598, 2017. [128] M. Cheng, Y. Jiang, P. Han,Q. Wang, “Unbalanced and low-order harmonic voltage mitigation of stand-alone dual-stator brushless doubly fed induction wind generator,”IEEE Trans. Ind. Electron., DOI: 10.1109/TIE.2017.2779422, 2017. [129] X. Wang, H. Lin,Z. Wang, “Transient control of the reactive current for the line-side converter of the brushless doubly-fed induction generator in stand-alone operation,”IEEE Trans. Power Electron., vol.32, no.10, pp. 8193-8203, 2017. [130] X. Wang,H. Lin, “DC-link current estimation for load-side converter of brushless doubly-fed generator in the current feed-forward control,”IET Electron., vol.9, no.8, pp. 1703-1710, 2016. [131] L. Liao,C. Sun, “A novel position sensorless control scheme for doubly fed reluctance motor drives,”IEEE Trans. Ind. Appl., vol.30, no.5, pp. 1210-1218, 1994. [132] H. Chaal,M. G. Jovanović, “Practical implementation of sensorless torque and reactive power control of doubly-fed machines,”IEEE Trans. Ind. Electron., vol.59, no.6, pp. 2645-2653, 2012. [133] M. G. Jovanović,H. Chaal, “Wind power applications of doubly-fed reluctance generators with parameter-free hysteresis control,”Energy Convers. Manage., vol.134, pp. 399-409, 2017. [134] S. Ademi, M. G. Jovanović,H. Chaal, “A new sensorless speed control scheme for doubly fed reluctance generators, ”IEEE Trans. Energy Convers., vol.31, no.3, pp. 993-1001, 2016. [135] K. Kiran, and S. Das, “Sensorless speed estimation and control of brushless doubly-fed reluctance machine drive using model reference adaptive system,” Proc. IEEE Int. Conf. Power Electron. Drives Energy Syst., Trivandrum, India, pp. 1-6, Dec. 2016. [136] K. Kiran, and S. Das, “Implementation of reactive power-based MRAS for sensorless speed control of brushless doubly fed reluctance motor drive,” IET Power Electron., vol.11, no.1, pp.192-201, 2018. [137] U. T. D. Shipurkar, and H. Polinder, “Achieving sensorless control for the brushless doubly-fed induction machine,” IEEE Trans. Energy Convers., vol.32, no.4, pp. 1611-1619, 2017. [138] W. Tang, J. Yang, G. Zhang, Y. Sun, S. Ademi, F. Blaabjerg, and Q. Zhu “Sensorless control of brushless doubly-fed induction machine using a control winding current MRAS observer,” IEEE Trans. Ind. Electron., DOI: 10.1109/TIE.2018.2831168, 2018. [139] Y. Liu, F. Xiong, and F. Blaabjerg, “Sensorless direct voltage control of the stand-alone brushless doubly-fed generator,” Proc. Int. Conf. Electr. Mach. Syst., Sydney, Australia, pp.1-6, Aug. 2017. [140] Y. Liu, W. Xu, T. Long, and F. Blaabjerg, “A new rotor speed observer for stand-alone brushless doubly-fed induction generators,” Proc. IEEE Energy Convers. Congr. Expo., Cincinnati, OH, USA, pp. 5086-5092, Oct. 2017. [141] R. Carlson, H. Voltolini, F. Runcos, and P. Kuo-Peng, “Performance analysis with power factor compensation of a 75 kW brushless doubly fed induction generator prototype,” Proc. IEEE Int. Electr. Mach. Drives Conf., Antalya, Turkey, pp. 1502-1507, May 2007. [142] R. E. Betz, and M. G. Jovanović, “Theoretical analysis of control properties for the brushless doubly fed reluctance machine,” IEEE Trans. Energy Convers., vol.17, no.3, pp. 332-339, 2002. [143] R. E. Betz, and M. G. Jovanović, “The brushless doubly fed reluctance machine and the synchronous reluctance machine – a comparison,” IEEE Trans. Ind. Appl., vol.36, no.4, pp. 1103- 1110, 2000. [144] A. M. Knight, R. E. Betz, and D. G. Dorrell, “Design and analysis of brushless doubly fed reluctance machines, ” IEEE Trans. Ind. Appl., vol.49, no.1, pp. 50-58, 2013. [145] L. Xu, B. Guan, and H. Liu, “Design and control of a high-efficiency doubly-fed brushless machine for wind power generator application,” IEEE Energy Convers. Congr. Expo., Atlanta, GA, USA, pp. 2409-2416, Sep. 2012. [146] M. Hsieh, Y. Chang, and D. G. Dorrell, “Design and analysis of brushless doubly fed reluctance machine for renewable energy applications,” IEEE Trans. Magn., vol.52, no.7, pp.1-5, Article#: 8204705, 2016. [147] T. Staudt, F. Wurtz, and L. Gerbaud, “An optimization oriented sizing model for brushless doubly fed reluctance machines: development and experimental validation, ” Electr. Power Syst. Res., vol.132, pp.125-131, 2016. |
[1] | Jianwei Zhang, Li Li, David G. Dorrell. Control and Applications of Direct Matrix Converters: A Review [J]. Chinese Journal of Electrical Engineering, 2018, 4(2): 18-27. |
[2] | Kai Ni, Yihua Hu, Yang Liu, Chun Gan. Overview on Fault-Tolerant Four-Switch Three-Phase Voltage Source Converters [J]. Chinese Journal of Electrical Engineering, 2017, 3(2): 6-6. |
[3] | Fengge Zhang, Siyang Yu, Hao Wang, Yutao Wang, Dapeng Wang. Overview of Research and Development Status of Brushless Doubly-Fed Machine System [J]. Chinese Journal of Electrical Engineering, 2016, 2(2): 1-13. |
[4] | TIAN Dewen;XIE Dagang;CUI Shumei. Hybrid Energy Control Strategy for Hybrid Electric Drive System in Military Vehicle [J]. , 2009, 45(2): 41-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||