[1] M Takeda, S Jochi.Development of adavanced solid state transfer switch using novel hybrid switch devices.in Proc. ASDCOM, 2003: 535-540. [2] J Haefner, B Jacobson.Proactive hybrid HVDC breakers: A key innovation for reliable HVDC grids. CIGRE Symposium, Bologna, 2011. [3] A Abramovitz, K M Smedley.Survey of solid-state fault current limiters,IEEE Trans. Power Electron., 2012, 27(6): 2770-2782. [4] N G Hingorani, L Gyugyi.Understanding facts: Concepts and technology of flexible ac transmission systems. New York: IEEE Press, 2000. [5] P S Georgilakis, P G Vernados.Flexible ac transmission system controllers: An evaluation.Materials Science Forum, 2011, 670: 399-406. [6] M Zadehbagheri, N A Azil, A Bagherinasab, et al.Performance evaluation of custom power devices in power distribution networks to power quality improvement: A review.International Journal of Scientific & Engineering Research, 2013, 4(5): 44-49. [7] M Montero, E Cadaval, F Gonzalez.Comparison of control strategies for shunt active power filters in three-phase four-wire systems.IEEE Trans. Power Electron., 2007, 22(1): 229-236. [8] S Babaa, M Armstrong, V Pickert.Overview of maximum power point tracking control methods for PV systems.Journal of Power and Energy Engineering, 2014: 59-72. [9] S B Kjaer, J K Pedersen, F Blaabjerg.A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans.Ind. Appl., 2005, 41(5): 1292-1306. [10] F Blaabjerg, M Liserre, K Ma.Power electronics converters for wind turbine systems.IEEE Energy Conversion Congress and Exposition (ECCE), 2011, 281-290. [11] Z Q Zhu, H Jiabing.Electrical machines and power-electronic systems for high-power wind energy generation applications: Part I-market penetration, current technology and advanced machine systems. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2013, 32: 7-33. [12] M Liserre, R Cardenas, M Molinas, et al.Overview of multi-MW wind turbines and wind parks.IEEE Trans. Ind. Electron., 2011, 58(4): 1081-1095. [13] S Ponnaluri, G Linhofer, J Steinke, et al.Comparison of single and two stage topologies for interface of BESS or fuel cell system using the ABB standard power electronics building blocks.European Conference on Power Electronics and Applications, 2005: 1-9. [14] EPRI. EPRI-DOE handbook of energy Storage for transmission & distribution applications.2003. https:// www.sandia.gov/ess-ssl/publications/ESHB%201001834% 20reduced%20size.pdf. [15] F Blaabjerg, Z Chen, S Kjaer.Power electronics as efficient interface in dispersed power generation systems.IEEE Trans. Power Electron., 2004, 19(5): 1184-1194. [16] J Carrasco, L Franquelo, J Bialasiewicz, et al.Power-electronic systems for the grid integration of renewable energy sources: A survey.IEEE Trans. Ind. Electron., 2006, 53(4): 1002-1016. [17] I Alan, T A Lipo.Induction machine based flywheel energy storage system.IEEE Trans. Aerospace and Electronic systems, 2003, 39(1): 151-163. [18] R H Lasseter.Microgrids.IEEE Power Engineering Society Winter Meeting, 2001: 146-149. [19] S Backhaus, G W Swift.DOE DC microgrid scoping study: Opportunities and challenges.in Proc. ICDCM, 2005: 43-44. [20] R Majunder, A Gosh, G Ledwich.Power management and power flow control with back-to-back converters in a utility connected microgrid.IEEE Trans. Power Systems, 2010, 25(2): 821-834. [21] R Salcedo, A Bokhari, M Diaz-Aguilo, et al.Benefits of a nonsynchronous microgrid on dense-load LV secondary networks.IEEE Trans. Power Del., 2013, 31(3): 1076-1084. [22] R Majumder.A hybrid microgrid with DC connection at back to back converters.IEEE Trans. Smart Grid, 2014, 5(1): 251-259. [23] S Xu, A Q Huang, R Burgos.Review of solid-state transformer technologies and their application in power distribution systems.IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013, 1: 186-198. [24] J Kolar, G Ortiz.Solid-state-transformers: Key components of future traction and smart grid systems. Proceedings of the International Power Electronics Conference ECCE Asia (IPEC), May. 2014. [25] Traction transformation: A power-electronic traction transformer (PETT).ABB Review, 2012, 1: 11-17. [26] R Raju, R Steigerwald, M Dame.High voltage, high frequency silicon carbide power electronic building blocks. GE report.Available: https://www.nist.gov/ system/files/documents/pml/high_megawatt/Approved-Raju-DoE_NIST_HMW_VSD_GE_raju.pdf. [27] D Das, R Kandular, J Munoz, et al.An integrated controllable network transfomer-hybrid active filter system.IEEE Trans. Ind. Appl., 2015, 51(2): 1692-1701. [28] S Zheng, J Wang, F Yang, et al.A DC controller for continuous variable series reactor.IEEE Energy Conversion Congress and Exposition (ECCE), 2015: 5786-5793. [29] J Wang.Design, characterization, modeling and analysis of high voltage silicon carbide power devices. North Carolina: North Carolina State Univ., 2010. [30] Q Zhang, R Callanan, M K Das, et al.SiC power devices for microgrids.IEEE Trans. Power Electron., 2010, 25: 2889-2896. [31] A Hefner, R Sei-Hyung, B Hull, et al.Recent advances in high-voltage, high-frequency silicon-carbide power devices.Industry Applications Conference IAS Annual Meeting, 2006: 330-337. [32] SiC power devices and modules. Rohm Semiconductor Co., Appl. Note 13103EAY01, Jun.2013. Available: https://d1d2qsbl8m0m72.cloudfront.net/en/products/databook/applinote/discrete/sic/common/sic_appli-e.pdf. [33] J W Palmour.Future high voltage silicon carbide power devices. Wolfspeed Inc., Workshop on Future Large CO2 Compression Systems, Rep. Mar. 2009. [34] D Grider, A Agarwal, S H Ryu, et al.Advanced SiC power technology for high megawatt power conditioning. Wolfspeed Inc., High Megawatt Power Conditioning System Workshop, Rep. May. 2012. [35] D Grider, M Das, A Agarwal, et al.10 kV/120 A SiC DMOSFET half H-bridge power modules for 1 MVA solid state power substation. Electric Ship Technologies Symposium (ESTS), 2011: 131-134. [36] M K Das, J J Sumakeris, B A Hull, et al.High power, drift-free 4H-SiC PiN diodes.IEEE Lester Eastman Conference on High Performance Devices, 2004: 236-240. [37] R Singh.Ultra-high voltage SiC power devices for reduced power electronics complexity. GeneSiC Semiconductor.Available: https://www.arpa-e.energy.gov/ sites/default/files/documents/files/SolarADEPT_Workshop_NxtGenPwr_Singh.pdf. [38] USCi Custom Products.Available: https://www.ecomal.com/fileadmin/Datenblaetter/USCi/Leaflet/USCi_Leaflet.pdf. [39] J Hostetler, P Alexandrov, X Li, et al.6.5 kV Silicon carbide enhanced mode JFETs for high voltage DC link applications.https://www.sandia.gov/ess-ssl/docs/pr_conferences/2014/Thursday/PosterSession8/12_Hostetler_John_ ENHANCED_MODE_JFETS_Poster.pdf. [40] J W Palmour, L Cheng, V Pala, et al.Silicon carbide power MOSFETs: Breakthrough performance from 900 V up to 15 kV. 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD), Waikoloa, HI, USA, 15-19 June 2014. [41] J B Casady, T McNutt, D Girder, et al. Medium voltage SiC R&D update. Apr.2016. https://www.nist.gov/system/ files/documents/pml/high_megawatt/Wolfspeed-Cree-SiC- Pwr-NIST-wkshp-Apr2016_SHORT.pdf. [42] R Sei-Hyung, K Sumi, B Hull, et al.10 kV, 5 A 4H-SiC power DMOSFET.IEEE International Symposium on Power Semiconductor Devices and IC's (ISPSD), 2006: 1-4. [43] J Wang, T Zhao, J Li, et al.Characterization, modeling, and application of 10-kV SiC MOSFET. IEEE Trans. Electron Devices, 2008, 55: 1798-1806. [44] A Huang.FREEDM system: A vision for the future grid.Power and Energy Society General Meeting, 2010: 1-4. [45] Q Zhang, M Das, J Sumakeris, et al.12-kV p-channel IGBTs with low on-resistance in 4H-SiC. IEEE Trans. Electron Device, 2008, 29: 1027-1029. [46] R Sei-Hyung, C Capell, C Lin, et al.High performance, ultra high voltage 4H-SiC IGBTs.Energy Conversion Congress and Exposition (ECCE), 2012: 3603-3608. [47] Y Yonezawa, T Mizushima, K Takenaka, et al.Low V/f and highly reliable 16 kV ultrahigh voltage SiC flip-type n-channel implantation and epitaxial IGBT.IEEE International Electron Devices Meeting (IEDM), 2013: 661-664. [48] J Hostetler, X Li, P Alexandrov, et al.6.5 kV Silicon Carbide JFETs siwtch module for high density power conversion system. EESAT Technical Conference, Sep. 2015. [49] J Bendel, X Li.Using “normally on” JFETs in power system.Bodo’s Power Systems, 2015: 40-43. [50] J Nakashima, A Fukumoto, Y Obiraki, et al.6.5-kV full SiC power module (HV100) with SBD-embedded SiC-MOSFETs.in PCIM Europe, 2018: 441-447. [51] N Soltau.3.3 kV full SiC MOSFETs: Towards high-performance traction inverters.Bodo’s Power Systems, 2018: 22-24. [52] Propulsion systems using 3.3-kV all-SiC devices.https://www.toshiba.co.jp/infrastructure/en/news/20190314.htm. [53] R Takayanagi, K Taniguchi, M Hoya, et al.3.3 kV power module for electric distribution equipment with SiC trench-gate MOSFET.in ICEP, 2019: 83-87. [54] Y Sekino, T Tsuji, T Shiigi, et al.3.3 kV all SiC module with 1st generation trench gate SiC MOSFETs for traction inverters.in PCIM Europe, 2020: 98-103. [55] B Singh, K Al-Haddad, A Chandra.A review of active filters for power quality improvement.IEEE Trans. Ind. Electron., 1999, 46(5): 960-971. [56] J Sun.Impedance based stability criterion for grid-connected inverters.IEEE Trans. Power Electron., 2011, 26(11): 3075-3078. [57] O Mahela, N Gupta, M Khosravy, et al.Comprehensive overview of low voltage ride through methods of grid integrated wind generator.IEEE Access, 2019, 7: 99299-99326. [58] M Aboukheili, M Shahabi, Q Shafiee, et al.Seamless transition of microgrids operation from grid-connected to islanded mode.IEEE Trans. Smart Grid, 2020, 11(3): 2106-2114. [59] F Qiu, J Wang, C Chen, et al.Optimal black start resource allocation.IEEE Trans. Power Systems, 2016, 31(3): 2493-2494. [60] S Ji, S Zheng, F Wang, et al.Temperature-dependent characterization, modeling and switching speed limitation analysis of third generation 10 kV SiC MOSFET.IEEE Trans. Power Electron., 2018, 33(5): 4317-4327. [61] S Ji, M Laitinen, X Huang, et al.Short circuit characterization and protection of 10 kV SiC MOSFET.IEEE Trans. Power Electron., 2019, 34(2): 1755-1764. [62] L Zhang, S Ji, S Gu, et al.Design considerations for high- voltage-insulated gate drive power supply for 10-kV SiC MOSFET applied in medium-voltage converter.IEEE Trans. Ind. Electron., DOI: 10.1109/TIE.2020.3000131 (early access). [63] J Palmer, S Ji, X Huang, et al.Improving voltage sensor noise immunity in a high voltage and high dv/dt environment.IEEE Applied Power Electronics Conference and Exposition (APEC), 2020: 107-113. [64] S Ji, X Huang, L Zhang, et al.Medium voltage (13.8 kV) transformer-less grid-connected DC/AC converter design and demonstration using 10 kV SiC MOSFETs.IEEE Energy Conversion Congress and Exposition (ECCE), 2019: 1953-1959. [65] S Ji, L Zhang, X Huang, et al.A novel voltage balancing control with dv/dt reduction for 10-kV SiC MOSFET-based medium voltage modular multilevel converter.IEEE Trans. Power Electron., 2020, 35(11): 12533-12543. [66] D Li, S Ji, X Huang, et al.Controller development of an asynchronous microgrid power conditioning system (PCS) converter considering grid requirements.IEEE Applied Power Electronics Conference and Exposition (APEC), 2020: 616-621. [67] J Palmer, S Ji, X Huang, et al.Testing and validation of 10 kV SiC MOSFET based 35 kVA MMC phase-leg for medium voltage (13.8 kV) grid.IEEE Energy Conversion Congress and Exposition (ECCE), 2019: 2001-2006. |