[1] C Ma, Q Li, L Deng, et al.A novel sound quality evaluation method of the diagnosis of abnormal noise in interior permanent-magnet synchronous motors for electric vehicles.IEEE Trans. Ind. Electron., 2017, 64(5): 3883-3891. [2] M Cheng, L Sun, G Buja, et al.Advanced electrical machines and machine-based systems for electric and hybrid vehicles.Energies, 2015, 8(9): 9541-9564. [3] S Zhu, Y Hu, C Liu, et al.Iron loss and efficiency analysis of interior pm machines for electric vehicle applications.IEEE Trans. Ind. Electron., 2018, 65(1): 114-124. [4] S J Rind, Y X Ren, Y H Hu, et al.Configurations and control of traction motors for electric vehicles: A review.Chinese Journal of Electrical Engineering, 2017, 3(3): 1-17. [5] M Cheng, M H Tong.Development status and trend of electric vehicles in China.Chinese Journal of Electrical Engineering, 2017, 3(2): 1-13. [6] J K Si, S Z Zhao, L F Zhang, et al.The characteristics analysis and cogging torque optimization of a surface-interior permanent magnet synchronous motor,Chinese Journal of Electrical Engineering, 2018, 4(4): 41-47. [7] X Zhu, W Hua, Z Wu, et al.Analytical approach for cogging torque reduction in flux-switching permanent magnet machines based on magneto motive force-permeance model.IEEE Trans. Ind. Electron., 2018, 65(3): 1965-1979. [8] K Wang, Y P Liang, D M Wang, et al.Cogging torque reduction by eccentric structure of teeth in external rotor permanent magnet synchronous motors.IET Electric Power Appl., 2019, 13(3): 57-63. [9] I Petrov, P Ponomarev, Y Alexandrova, et al.Unequal teeth widths for torque ripple reduction in permanent magnet synchronous machines with fractional-slot non-overlapping windings.IEEE Trans. Magn., 2015, 51(2): 1-9. [10] G J Li, Z Q Zhu, M Foster, et al.Comparative studies of modular and unequal tooth PM machines either with or without tooth tips.IEEE Trans. Magn., 2014, 50(7): 1-10. [11] D K Kim, Y U Park, J H Cho.Cogging torque reduction of single-phase brushless DC motor with a tapered air-gap using optimizing notch size and position.IEEE Trans. Ind. Appl., 2015, 51(6): 2447-2453. [12] G J Li, B Ren, Z Q Zhu, et al.Cogging torque mitigation of modular permanent magnet machines.IEEE Trans. Magn., 2016, 52(1): 1-10. [13] Z T Du, T Lipo.Efficient utilization of rare earth permanent-magnet materials and torque ripple reduction in interior permanent-magnet machines.IEEE Trans. Ind. Appl., 2017, 53(4): 3485-3495. [14] L B Jing, Z H Luo, R H Qu, et al.Investigation of a surface PM machine with segmented-eccentric magnet poles. IEEE Trans. Appl. Super., 2018, 28(3): 1-5. [15] K Wang, Z Q Zhu, G Ombach.Torque enhancement of surface-mounted permanent magnet machine using third-order harmonic.IEEE Trans. Magn., 2014, 50(3): 1-10. [16] Z T Du, T Lipo.High torque density and low torque ripple shaped-magnet machines using sinusoidal plus third harmonic shaped magnets.IEEE Trans. Ind. Appl., 2019, 55(3): 2601-2610. [17] S A Saied, K Abbaszadeh, A Tenconi, et al.New approach to cogging torque simulation using numerical functions.IEEE Trans. Ind. Appl., 2014, 50(4): 2420-2426. [18] S Ruangsinchaiwanich, Z Q Zhu, D Howe.Influence of magnet shape on cogging torque and back-emf waveform in permanent magnet machines.International Conference on Electrical Machines and Systems, IEEE, 2005. [19] T Wegiel.Cogging torque analysis based on energy approach in surface-mounted PM machines.Proc. Int. Symp. Electr. Mach., 2017: 1-6. [20] F Ebadi1, M Mardaneh, A Rahideh, et al. Analytical energy-based approaches for cogging torque calculation in surface-mounted PM motors.IEEE Trans. Magn., 2019, 55(5): 1-10. [21] Z Q Zhu, L J Wu, Z P Xia.An accurate subdomain model for magnetic field computation in slotted surface-mounted permanent-magnet machines. IEEE Trans. Magn., 2010, 46(4): 1100-1115. [22] Z F Chen, C L Xia, Q Geng, et al.Modeling and analyzing of surface-mounted permanent-magnet synchronous machines with optimized magnetic pole shape.IEEE Trans. Magn., 2014, 50(11): 1100-1115. [23] Y Zhou, H S Li, G W Meng, et al.Analytical calculation of magnetic field and cogging torque in surface-mounted permanent-magnet machines accounting for any eccentric rotor shape.IEEE Trans. Ind. Electron., 2015, 62(6): 3438-3446. [24] Yu Zeng, Ming Cheng, Guohai Liu, et al. Effects of magnet shape on torque capability of surface-mounted permanent magnet machine for servo applications. IEEE Trans. Ind. Electron., 2019, PP(99):1-1. DOI:10.1109/ TIE.2019.2910025. |