[1] Q Chen, G Xu, G Liu, et al.Torque ripple reduction in five-phase interior permanent magnet motors by lowering interactional MMF.IEEE Trans. Ind. Electron., 2018, 65(11): 8520-8531. [2] P Chen, K Hu, Y Lin, et al.Development of a prime mover emulator using a permanent-magnet synchronous motor drive.IEEE Trans. Power Electron., 2018, 33(7): 6114-6125. [3] S K Lee, G H Kang, J Hur.Finite element computation of magnetic vibration sources in 100 kW two fractional-slot interior permanent magnet machines for a ship. IEEE Trans. Magn., 2012, 48(2): 867-870. [4] J Zheng, W Zhao, J Ji, et al.Sleeve design of permanent-magnet machine for low rotor losses.Chinese Journal of Electrical Engineering, 2020, 6(4): 86-96. [5] J Gan, K Chau, C Chan, et al.A new surface-inset permanent-magnet brushless DC motor drive for electric vehicles.IEEE Trans. Magn., 2000, 36(5): 3810-3818. [6] W Zhao, T Lipo, B Kwon.Optimal design of a novel asymmetrical rotor structure to obtain torque and efficiency improvement in surface inset PM motors.IEEE Trans. Magn., 2015, 51(3): 8100704. [7] Z Ling, J Ji, T Zeng, et al.Design optimization and comparison of linear magnetic actuators under different topologies.Chinese Journal of Electrical Engineering, 2020, 6(1): 41-51. [8] G Liu, X Du, W Zhao, et al.Reduction of torque ripple in inset permanent magnet synchronous motor by magnets shifting.IEEE Trans. Magn., 2017, 53(2): 8100713. [9] Y Jung, M Lim, J Jeong, et al.Torque ripple reduction of IPMSM applying asymmetric rotor shape under certain load condition.IEEE Trans. Energy Convers., 2018, 33(1): 333-340. [10] L Huang, J Feng, S Guo, et al.Rotor shaping method for torque ripple mitigation in variable flux reluctance machines.IEEE Trans. Energy Convers., 2018, 33(3): 1579-1589. [11] G Liu, G Xu, W Zhao, et al.Improvement of torque capability of a permanent-magnet motor by using hybrid rotor configuration.IEEE Trans. Energy Convers., 2017, 32(3): 953-962. [12] X Du, G Liu, Q Chen, et al.Optimal design of an inset PM motor with assisted barriers and magnet shifting for improvement of torque characteristics.IEEE Trans. Magn., 2017, 53(11): 8109204. [13] G Liu, Z Lin, W Zhao, et al.Third harmonic current injection in fault-tolerant five-phase permanent-magnet motor drive.IEEE Trans. Ind. Electron., 2018, 33(8): 6970-6979. [14] Y Guo, J Si, C Gao, et al.Improved fuzzy-based Taguchi method for multi-objective optimization of direct-drive permanent magnet synchronous motors.IEEE Trans. Magn., 2019, 55(6): 8102204. [15] F Dong, J Song, J Zhao, et al.Multi-objective design optimization for PMSLM by FITM.IET Electr. Power Appl., 2018, 12(2): 188-194. [16] W Zhao, A Ma, J Ji, et al.Multi-objective optimization of a double-side linear vernier PM motor using response surface method and differential evolution.IEEE Trans. Ind. Electron., 2020, 67(1): 80-90. [17] L Xu, W Zhao, G Liu, et al.Design optimization of a spoke-type permanent-magnet vernier machine for torque density and power factor improvement.IEEE Trans. Veh. Technol., 2019, 68(4): 3446-3456. [18] X Zhu, W Wu, L Quan, et al.Design and multi-objective stratified optimization of a less-rare-earth hybrid permanent magnets motor with high torque density and low cost.IEEE Trans. Energy Convers., 2019, 34(3): 1178-1189. [19] D Lee, A Yoon, S Sirimanna, et al.Impact of manufacturing tolerances on a low-reactance slotless PM synchronous machine.IEEE Trans. Energy Convers., 2019, 35(1): 366-374. [20] I Coenen, M Giet, K Hameyer.Manufacturing tolerances: Estimation and prediction of cogging torque influenced by magnetization faults.IEEE Trans. Magn., 2012, 48(5): 1932-1936. [21] M Zhou, X Zhang, W Zhao, et al.Influence of magnet shape on the cogging torque of a surface-mounted permanent magnet motor.Chinese Journal of Electrical Engineering, 2019, 5(4): 40-50. [22] A Ortega, L Xu.Analytical prediction of torque ripple in surface-mounted permanent magnet motors due to manufacturing variations.IEEE Trans. Energy Convers., 2016, 31(4): 1634-1644. [23] J Qu, Y Liu, R Qu, et al.Experimental and theoretical research on cogging torque of PM synchronous motors considering manufacturing tolerances.IEEE Trans. Ind. Electron., 2018, 65(5): 3772-3783. [24] G Lei, T Wang, J Zhu, et al.System-level design optimization method for electrical drive systems-robust approach.IEEE Trans. Ind. Electron., 2015, 62(8): 4702-4713. [25] P Putek, E Maten, M Gunther, et al.Variance-based robust optimization of a permanent magnet synchronous machine.IEEE Trans. Magn., 2018, 54(3): 8102504. [26] P Koch, R Yang, L Gu.Design for six sigma through robust optimization.Struct. Multidiscip. Optim., 2004, 26: 235-248. [27] Q Chen, Y Yan, G Xu, et al.Principle of torque ripple reduction in synchronous reluctance motors with shifted asymmetrical poles.IEEE J. Emerg. Sel. Top. Power Electron., 2020, 8(3): 2611-2622. [28] X Zhu, Z Xiang, L Quan, et al.Multimode optimization design methodology for a flux-controllable stator permanent magnet memory motor considering driving cycles.IEEE Trans. Ind. Electron., 2018, 65(7): 5353-5366. [29] G Lei, C Liu, J Zhu, et al.Techniques for multilevel design optimization of permanent magnet motors.IEEE Trans. Energy Convers., 2015, 30(4): 1574-1584. [30] A Waqas, D Melati, A Melloni.Stochastic simulation and sensitivity analysis of photonic circuit through Morris and Sobol method.Optical Fiber Communications Conference and Exhibition (OFC), 2017. [31] B Assaad, K Benkara, S Vivier, et al.Thermal design optimization of electric machines using a global sensitivity analysis.IEEE Trans. Ind. Electron., 2017, 53(6): 5365-5372. [32] X Sun, Z Shi, G Lei, et al.Analysis and design optimization of a permanent magnet synchronous motor for a campus patrol electric vehicle.IEEE Trans. Veh. Technol., 2019, 68(11): 10535-10544. [33] X Zhu, M Jiang, Z Xiang, et al.Design and optimization of a flux-modulated permanent magnet motor based on an airgap-harmonic-orientated design methodology.IEEE Trans. Ind. Electron., 2020, 67(7): 5337-5348. [34] G Bramerdorfer.Computationally efficient tolerance analysis of the cogging torque of brushless PMSMs.IEEE Trans. Ind. Appl., 2017, 53(4): 3387-3393. [35] J Li, D Xiu.Evaluation of failure probability via surrogate models. J.Comput. Phys., 2010, 229(23): 8966-8980. [36] Y Zhang, D Gong, Z Ding.A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch.Information Sciences., 2012, 192: 213-227. [37] M Ghasemi, S Ghavidel, M Ghanbarian, et al.Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using a multi-objective modified imperialist competitive algorithm.Energy, 2014, 78: 276-289. [38] B Qu, Y Zhu, Y Jiao, et al.A survey on multi-objective evolutionary algorithms for the solution of the environmental/economic dispatch problems.Swarm Evol. Comput., 2018, 38: 1-11. [39] V Rafiee, J Faiz.Robust design of an outer rotor permanent magnet motor through six-sigma methodology using response surface surrogate model.IEEE Trans. Magn., 2019, 55(10): 8107110. [40] C Jun, B Kwon.Process capability control procedure for electrical machines by using a six-sigma process for achieving six-sigma quality level.IET Electr. Power Appl., 2017, 11(8): 1466-1474. [41] M Islam, A Arafat, S Bonthu, et al.Design of a robust five-phase ferrite-assisted synchronous reluctance motor with low demagnetization and mechanical deformation.IEEE Trans. Energy Convers., 2019, 34(2): 722-730. [42] B Ma, G Lei, J Zhu, et al.Application-oriented robust design optimization method for batch production of permanent-magnet motors.IEEE Trans. Ind. Electron., 2018, 65(2): 1728-1739. [43] G Bramerdorfer.Tolerance analysis for electric machine design optimization: Classification, modeling and evaluation, and example.IEEE Trans. Magn., 2019, 55(8): 8106809. [44] G Bramerdorfer.Effect of the manufacturing impact on the optimal electric machine design and performance.IEEE Trans. Energy Convers., 2020, 35(4): 1935-1943. |