[1] M Yang, Y W Wu, Y Z Zhu, et al.Coordinated control for autonomous DC microgrid with dynamic load power sharing.Power System Technology, 2017, 41(2): 440-447. [2] X Y Wang, G F Tang, X G Wei, et al.LCL-based resonant modular multilevel DC/DC converter for DC grids.Power System Technology, 2017, 41(4): 1106-1113. [3] G Lin, Y Li, Z Y Wang, et al.Resonance mechanism analysis and its active damping suppression of LVDC distribution system.Power System Technology, 2017, 41(10): 3358-3364. [4] M S Wang, Z M Li, Y Wang.Distribution network distributed power supply configuration considering the uncertainties of electric vehicle.Power System Protection and Control, 2019, 47(1): 67-72. [5] S Cheng, S Y Wu, W B Sun.Optimal planning of charging stations for electric vehicles considering voltage stability of distribution system and the quality of service.Power System Protection and Control, 2019, 47(7): 12-21. [6] B Ko, G Lee, K Choi, et al.A coordinated droop control method using a virtual voltage axis for power management and voltage restoration of DC microgrids.IEEE Transactions on Industrial Electronics, 2018, 66(11): 9076-9085. [7] M Mokhtar, M I Marei, A A El-Sattar. An adaptive droop control scheme for DC microgrids integrating sliding mode voltage and current controlled boost converters.IEEE Transactions on Smart Grid, 2019, 10(2): 1685-1693. [8] G Li, Z Du, C Shen, et al.Coordinated design of droop control in MTDC grid based on model predictive control.IEEE Transactions on Power Systems, 2018, 33(3): 2816-2828. [9] V Nasirian, A Davoudi, F L Lewis, et al.Distributed adaptive droop control for DC distribution systems.IEEE Transactions on Energy Conversion, 2014, 29(4): 944-956. [10] X Lu, K Sun, J M Guerrero, et al.State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications.IEEE Transactions on Industrial Electronics, 2014, 61(6): 2804-2815. [11] X Lu, K Sun, J M Guerrero, et al.Double-quadrant state-of-charge-based droop control method for distributed energy storage systems in autonomous DC microgrids.IEEE Transactions on Smart Grid, 2015, 6(1): 147-157. [12] W Wu, Y Chen, A Luo, et al.A virtual inertia control strategy for DC microgrids analogized with virtual synchronous machines.IEEE Transactions on Industrial Electronics, 2017, 64(7): 6005-6016. [13] Y Li, L He, F Liu, et al.Flexible voltage control strategy considering distributed energy storages for DC distribution network.IEEE Transactions on Smart Grid, 2019, 10(1): 163-172. [14] X Zhu, Z Xie, S Jing, et al.Distributed virtual inertia control and stability analysis of DC microgrid.IET Generation, Transmission & Distribution, 2018, 12(14): 3477-3486. [15] S Samanta, J P Mishra, B K Roy.Virtual DC machine: An inertia emulation and control technique for a bidirectional DC-DC converter in a DC microgrid.IET Electric Power Applications, 2018, 12(6): 874-884. [16] G. Lin, J Ma, Y Li, et al.A virtual inertia and damping control to suppress voltage oscillation in islanded DC microgrid.IEEE Transactions on Energy Conversion, DOI: 10.1109/TEC.2020.3039364. [17] X Zhu, F Meng, Z Xie, et al.An inertia and damping control method of DC-DC converter in DC microgrids.IEEE Transactions on Energy Conversion, 2020, 35(2): 799-807. [18] J Liu, Y Miura, T Ise.Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators.IEEE Transactions on Power Electronics, 2016, 31(5): 3600-3611. [19] Z Guo, H Li, C Liu, et al.Stability-improvement method of cascaded DC-DC converters with additional voltage-error mutual feedback control.Chinese Journal of Electrical Engineering, 2019, 5(2): 63-71. [20] X Zhang, Q Gao, Y Hu, et al.Active power reserve photovoltaic virtual synchronization control technology.Chinese Journal of Electrical Engineering, 2020, 6(2): 1-6. |