[1] L. J. Wu, Z. Q. Zhu, and J. T. Chen, “Optimal split ratio in fractional-slot interior permanent magnet machines with non-overlapping windings,” IEEE Trans. Magn., vol. 46, no. 5, pp. 1235-1242, May 2010. [2] P. Zhou, D. Lin, G. Wimmer, and N. Lambert, “Determination of Axis Parameters of Interior Permanent Magnet Machine,” IEEE Trans. Magn., vol. 46, no. 8, pp. 3125-3128, Aug. 2010. [3] H. V. Xuan, D. Lahaye, and H. Polinder, “Influence of stator slotting on the performance of permanent-magnet machines with concentrated windings,” IEEE Trans. Magn., vol. 49, no. 2, pp. 929-938, Feb. 2013. [4] T. M. Jahns, G. B. Kliman, and Neumann T. W, “Interior permanent-magnet synchronous motors for adjustable-speed drives,” IEEE Trans. Ind. Appl., vol. 4, pp. 738-747, Jul. 1986. [5] B. J. Chalmers, S. A. Hamed, G. D Baines, “Parameters and performance of a high-field permanent-magnet synchronous motor for variable-frequency operation,” IEE Proceedings B (Electric Power Applications), vol. 132, no. 3, pp. 117-124, IET Digital Library, 1985. [6] K. J. Meessen, P. Thelin, J. Soulard, and E. A. Lomonova, “Inductance calculations of permanent-magnet synchronous machines including flux change and self-and cross-saturations,” IEEE Trans. Magn., vol. 44, no. 10, pp. 2324-2331, Oct. 2008. [7] S. Morimoto, M. Sanada, Y. Takeda, “Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator,” IEEE Trans. Ind. Appl., vol. 30, no.4, pp. 920-926, Jul/Aug 1994. [8] H. Karmaker, and A. M. Knight, “Investigation and simulation of fields in large salient-pole synchronous machines with skewed stator slots,” IEEE Trans. Energy Conv., vol. 20, no. 3, pp. 604-610, Sep. 2005. [9] M. A. Alhamadi, and N. A. Demerdash, “Modeling of effects of skewing of rotor mounted permanent magnets on the performance of brushless DC motors,” IEEE Trans. Energy Conv., vol. 6, no. 4, pp. 721-729, Dec. 1991. [10] S. Williamson, T. J. Flack, and A. F. Volschenk, “Representation of skew in time-stepped two-dimensional finite-element models of electrical machines,” IEEE Trans. Ind. Appl., vol. 31, no.5, pp. 1009-1015, Sep./Oct. 1995. [11] W. Q. Chu, and Z. Q. Zhu, “Reduction of on-load torque ripples in permanent magnet synchronous machines by improved skewing,” IEEE Trans. Magn., vol. 49, no.7, pp. 3822-3825, Jul. 2013. [12] Bomela X. B., Kamper M. J., “Effect of stator chording and rotor skewing on performance of reluctance synchronous machine,” IEEE Trans. Ind. Appl., vol. 38, no.1, pp. 91-100, Jan. 2002. [13] Z. L. Gaing, C. H. Lin, M. H. Tsai, “Rigorous design and optimization of brushless PM motor using response surface methodology with quantum-behaved PSO operator,” IEEE Trans. Magn., vol. 50, no.1, pp. 1-4, Jan. 2014. [14] M. M. Koo, S. M. Jang, Y. S. Park,“Characteristic analysis of direct-drive wind power generator considering permanent magnet shape and skew effects to reduce torque ripple based on analytical approach,” IEEE Trans. Magn., vol. 49, no.7, pp. 3917-3920, Jul. 2013. [15] M. A. Alhamadi, and N. A. Demerdash, “Modeling and experimental verification of the performance of a skew mounted permanent magnet brushless DC motor drive with parameters computed from 3D-FE magnetic field solutions,” IEEE Trans. Energy Conv., vol. 9, no. 1, pp. 26-35, Mar. 1994. [16] H. De Gersem, K. Hameyer, and T. Weiland, “Skew interface conditions in 2-D finite-element machine models,” IEEE Trans. Magn., vol. 39, no. 3, pp. 1452-1455, May 2003. [17] Y. S. Chen, Z. Q. Zhu, and D. Howe, “Calculation of d- and q-axis inductances of PM brushless ac machines accounting for skew,” IEEE Trans. Magn., vol. 41, no.10, pp. 3940-3942, Oct. 2005. [18] G. Qi, J. T. Chen, Z. Q. Zhu, “Influence of skew and cross-coupling on flux-weakening performance of permanentmagnet brushless AC machines,” IEEE Trans. Magn., vol. 45, no. 5, pp. 2110-2117, May 2009. [19] Tessarolo A., “Accurate computation of multiphase synchronous machine inductances based on winding function theory,” IEEE Trans. Energy Conv., vol. 27, no. 4, pp. 895- 904, Dec. 2012. [20] J. Faiz, and I. Tabatabaei, “Extension of winding function theory for nonuniform air gap in electric machinery,” IEEE Trans. Magn., vol. 38, no. 6, pp. 3654-3657, Nov. 2002. [21] H. A. Toliyat, M. M. Rahimian, and T. A. Lipo, “d-q Modeling of five phase synchronous reluctance machine including third harmonic of air-gap MMF,” in Conf. Rec. IEEE-IAS Annu. Meeting, 1991, pp. 231-237 . [22] T. Lubin, T. Hamiti, H. Razik, “Comparison between finite-element analysis and winding function theory for inductances and torque calculation of a synchronous reluctance machine,” IEEE Trans. Magn., vol. 43, no.8, pp. 3406-3410, Aug. 2007. [23] J. M. Gojko, D. D. Momir, and O. B. Aleksandar, “Skew and linear rise of MMF across slot modelling-winding function approach,” IEEE Trans. Energy Conv., vol. 14, no.3, pp. 315-320, Sep. 1999. [24] R. Dutta, and M. F. Rahman, “A comparative analysis of two test methods of measuring d- and q- axes inductances of interior permanent-magnet machine,” IEEE Trans. Magn., vol. 42, no. 11, pp. 3712-3718, Nov. 2006. [25] Q. Li, T. Fan, and X. Wen, “Armature-reaction magnetic field analysis for interior permanent magnet motor based on winding function theory,” IEEE Trans. Magn., vol. 49, no. 3, pp. 1193-1201, Mar. 2013. [26] A. Chiba, F. Nakamura, T. Fukao, “Inductances of cageless reluctance-synchronous machines having nonsinusoidal space distributions,” IEEE Trans. |