[1] J Wang, Y Song, F Liu, et al.Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models.Renewable and Sustainable Energy Reviews, 2016, 60: 960-981. [2] J Chen, Q Zhu, H Li, et al.Learning heterogeneous features jointly: A deep end-to-end framework for multi-step short-term wind power prediction.IEEE Transactions on Sustainable Energy, 2020, 11(3): 1761-1772. [3] K Amritha, V Rajagopal, K N Raju, et al.Ant lion algorithm for optimized controller gains for power quality enrichment of off-grid wind power harnessing units.Chinese Journal of Electrical Engineering, 2020, 6(3): 85-97. [4] Q Wang, B Carlo, H Y Wu, et al.Quantifying the economic and grid reliability impacts of improved wind power prediction.IEEE Transactions on Sustainable Energy, 2016, 7(4): 1525-1537. [5] S Saroha, S K Aggarwal.Wind power prediction using wavelet transforms and neural networks with tapped delay.CSEE Journal of Power & Energy Systems, 2018, 4(2): 197-209. [6] L L Li, X Zhao, L M Tseng, et al.Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm.Renewable Energy, 2020, 156(13): 1373-1388. [7] L J Wang, H Li, S B Fang.The model of wind power short-term prediction based on artificial fish swarm algorithm of support vector machine.Journal of Electrical Engineering, 2016, 11(10): 7-12. [8] H Q Wang, F C Sun, Y N Cai, et al.On multiple kernel learning methods.Acta Automatica Sinica, 2010, 36(8): 1037-1050. [9] S Sonnenburg, G Rätsch, C Schäfer, et al.Large scale multiple kernel learning.Journal of Machine Learning Research, 2006, 7: 1531-1565. [10] Y Gu, J Chanussot, X Jia, et al.Multiple kernel learning for hyperspectral image classification: A review.IEEE Transactions on Geoscience & Remote Sensing, 2017, 55(11): 6547-6565. [11] D Wu, B Y Wang, D Precup, et al.Multiple kernel learning based transfer regression for electric load forecasting.IEEE Transactions on Smart Grid, 2020, 11(2): 1183-1192. [12] A Rakotomamonjy, F R Bach, S Canu, et al.SimpleMKL.Journal of Machine Learning Research, 2008, 9(3): 2491-2521. [13] B Scholkopf, A J Smola, Williamson R C, et al. New support vector methods.Neural Computation, 2000, 12(5): 1207-1245. [14] X X Xu, I W Tsang, D Xu.Soft margin multiple kernel learning.IEEE Transactions on Neural Networks & Learning Systems, 2013, 24(5): 749-761. [15] G B Huang, Q Y Zhu, C K Siew, et al.Extreme learning machine: Theory and applications.Neurocomputing, 2006, 70: 489-501. [16] G B Huang, H Zhou, X Ding, et al.Extreme learning machine for regression and multiclass classification.IEEE Transactions on Systems Man & Cybernetics Part B, 2012, 42(2): 513-529. [17] O Chapelle, V Vapnik, O Bousquet, et al.Choosing multiple parameters for support vector machines.Machine Learning, 2002, 46(1-3): 131-159. [18] M Kloft, U Brefeld, S Sonnenburg, et al.Lp-norm multiple kernel learning.Journal of Machine Learning Research, 2011(12): 953-997. [19] C C Chang, C J Lin.LIBSVM: A library for support vector machines.Acm Transactions on Intelligent Systems & Technology, 2011(2): 1-27. [20] Alberta Electric System Operator (AESO). Wind power integration[2018-04-01]. . Wind power integration[2018-04-01]. http://www.aeso.ca/gridoperations/13902. html. |