Chinese Journal of Electrical Engineering ›› 2015, Vol. 1 ›› Issue (1): 9-20.
• Orginal Article • Previous Articles Next Articles
Yukai Wang, Yuying Shi, Yang Xu, Robert D. Lorenz*
Online:
2015-12-25
Published:
2015-12-25
About author:
Yukai Wang received the B.S. degree in Electrical Engineering from the Tianjin University, Tianjin, China, in 2011, and the M.S. degree in Mechanical Engineering from the University of Wisconsin-Madison, WI, USA, in 2013. He is currently working toward the Ph.D. degree at the University of Wisconsin- Madison, WI, USA. His research interests include electric machines and drive control technology.Supported by:
Yukai Wang, Yuying Shi, Yang Xu, Robert D. Lorenz*. A Comparative Overview of Indirect Field Oriented Control (IFOC) and Deadbeat-Direct Torque and Flux Control (DB-DTFC) for AC Motor Drives[J]. Chinese Journal of Electrical Engineering, 2015, 1(1): 9-20.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] D. W. Novotny,T. A. Lipo, Vector Control and Dynamics of AC Drives. New York: Oxford University Press Inc., 1996 [2] B. H. Kenny,R.D. Lorenz, "Stator and rotor flux based deadbeat direct torque control of an induction machine", IEEE Trans. on Ind. Appl., vol.39, no.4, pp. 1093-1101, July/Aug, 2003. [3] R. D. Lorenz, "The emerging role of deadbeat, direct torque & flux control in the future of induction machine", in Proc. of the Optimization of Electrical and Electronic Equipment Conf., 2008, pp.19-27. [4] X. Xu,D.W. Novotny, “Implementation of direct stator flux orientation control on a versatile DSP based system,” IEEE Trans. Ind. Appl, vol. 27, no. 4, pp. 694-700, Jul./Aug. 1991. [5] X. Xu, R. W.De Doncker,and D.W. Novotny, “A stator flux oriented induction machine drive”, in Proc. IEEE PESC’88, vol.2, pp. 870-876, 1988. [6] R. W.De Doncker, and D. W. Novotny, “The universal field oriented controller,” IEEE Trans. Ind. Appl., vol. 30, no. 1, pp.92-100, Jan./Feb. 1994. [7] F. Briz, M. W. Degner,R. D. Lorenz, “Analysis and design of current regulators using complex vectors,” IEEE Trans. Ind. Appl., vol. 36, no. 3, pp. 817-825, May/Jun. 2000. [8] H. Kim, M. W. Degner, J. Guerrero, F. Briz,R. D. Lorenz, “Discrete-time current regulator design for AC machine drives,” IEEE Trans. Ind. Appl., vol. 46, no. 4, pp. 1425-1435, July/Aug. 2010. [9] M. Depenbrock, “Direct self-control for high dynamics performance of inverter feed AC machines,” ETZ Arch., vol. 7, no. 7, pp. 211-218, 1985. [10] I. Takahashi,T. Naguchi,“A new quick-response and high efficiency control strategy of an induction motor,” IEEE Trans. Ind. Appl., vol. IA-22, pp. 820- 827, Sept./Oct. 1986. [11] Y. S. Lai, "A new approach to direct torque control of induction motor drives for constant inverter switching frequency and torque ripple reduction," IEEE Trans Energy Conv., vol. 16, no. 3, pp. 220-227, Sept. 2001. [12] D. Cascadei, G. Serra, A. Stefni, A. Tani,L. Zarri, “DTC drives for wide speed range applications using a robust flux-weakening algorithm”, IEEE Trans. Ind. Electron., vol. 54, no.5, pp.2451-2461, Oct, 2007. [13] Z. Xu,M. F. Rahman, “Direct torque and flux regulation of an IPM synchrnous motor drive using variable control approach”, IEEE Trans. Power Electron., vol. 22, no.6, pp.2486-2498, Nov, 2007. [14] T. Habetler, F. Profumo, M. Pastorelli,and L. Tolbert, "Direct torque control of induction machines using space vector modulation," IEEE Trans. Ind. Appl, vol. 28, no. 5, Sept./Oct. 1992. [15] T. Habetler, F. Profumo,M. Pastorelli, "Direct torque control of induction machines over a wide speed range," in Proc. IEEE Ind.Applic. Soc. Annual Meeting, vol.1 pp.600-606, 1992. [16] G. Griva, T. Habetler, F. Profumo,M. Pastorelli, "Performance evaluation of a direct torque controlled drive in the continuous PWM-square wave transition region", IEEE Trans. Power Electron., vol. 10, no. 4, pp. 237-244, Jul. 1995. [17] J. S. Lee, C. H. Choi, J. K. Seok,R. D. Lorenz, "Deadbeat-direct torque and flux control of with discrete time stator current and stator flux linkage observers,” IEEE Trans. Ind. Appl., vo.47, no.4, pp. 1749-1758, Jul./Aug. 2011. [18] P. L. Jansen,R. D. Lorenz, “A physically insightful approach to the design and accuracy assessment of flux observers for field oriented induction machine drives,” IEEE Trans. Ind. Appl., vol. 30, no. 1 pp. 101-110, Jan./Feb. 1994. [19] N. T. West,R. D. Lorenz, “Digital implementation of stator and rotor flux-linkage observers and a stator- current observer for deadbeat direct torque control for induction machines,” IEEE Trans. Ind. Appl., vol.45, no. 2, pp. 729- 736, May/April. 2009. [20] Y. Wang, S. Tobayashi, R.D. Lorenz, “A low-switchingfrequency flux observer and torque model of deadbeat, direct torque and flux control on induction machine drives”, IEEE Trans. on Ind. Appl., vol. 51, no.3, Jan/Feb, 2015. [21] R. Krishnan,F. C. Doran, “Study of parameter sensitivity in high-performance inverter-fed induction motor drive systems,” IEEE Trans. Ind.Appl., no. 4, pp. 623-635, 1987. [22] K. B. Nordin, D. W. Novotny, D. S. Zinger, “The influence of motor parameter deviations in feedforward field orientation drive systems,” IEEE Trans. Ind.Appl., no. 4, pp. 1009-1015, 1985. [23] R.D. Lorenz, “Tuning of field oriented induction motor controllers for high performance applications,” IEEE Trans. Ind. Appl, vol. IA-22, no. 52, PP. 293-297, Mar./Apr. 1986. [24] R. D. Lorenz,D. W. Novotny, “Saturation effects in field oriented induction machines,” IEEE Trans. Ind. Appl, vol. 26, no. 2, pp.283-289, Mar./Apr.1990[25] B. E. Heinbokel,and R. D. Lorenz, "Robust evaluation of deadbeat-direct torque & flux control for induction machines," European Power Electronic and Applica- tions (EPE), 2009 13th IEEE, pp.1-10, 2009. [26] P. Vas, Vector Control of AC Machines. Oxford: Claredon, pp. 124-126, 1990. [27] X. Xu,D. W. Novotny, “selecting the flux reference for induction machine drives in the field weakening region”, in IEEE Ind. Application. Soc. Annu. Meeting Conf. Rec., 1991, pp.361-367. [28] S. Kim,S. K. Sul, “Maximum torque control of an induction machine ine the field weakening region”, IEEE Trans. Ind. Applic., vol. 31, no.4, pp.787-794, July/Aug, 1995. [29] S. Kim,S. K. Sul, “Voltage control strategy for maximum torque operation of an induction machine in the field weakening region”, IEEE Trans. Ind. Electron., vol. 44, no.4, pp.512-518 Aug., 1997. [30] J. Jung,K. Nam, "A dynamic decoupling control scheme for high-speed operation of induction motors," IEEE Trans. Ind.Electron. 46, pp. 100-110, 1999. [31] D. R. Seidl,D. A. Kaiser, R.D. Lorenz, “one step optimal space vector PWM current regulation using a neural network”, in Proc. IEEE Ind.Applic. Soc. Annu. Meeting, pp. 867-874, 1994. [32] J. K. Seok, J. S. Kim,S. K. Sul, “overmodulation strategy for high performance torque control”, IEEE Trans. Ind. Electron., vol. 13, no.4, July, pp.786-792, 1998. [33] J. Holtz, W. Lotzkat,A. M. Khambadkone, “On continuous control of PWM inverter in the over-modulation range including the six-step model,” IEEE Trans. Power Electron., vol. 8, no. 4, pp.546-553, Oct. 1994. [34] A. Khambadkone,J. Holtz, “Compensated synch- ronous PI current controller in overmodulation range and six-step operation of space vector modulation based vector-controlled drive,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 574- 580, Jun., 2002[35] J. K. Seok, and S. H. Kim, “Hexagon voltage manipulating control for ac motor drives operating at voltage limit”, IEEE Trans. Ind. Applic., vol.51, no.5, pp.3829-3837, Sept/Oct. 2015. [36] C. H. Choi, J. K. Seok,R. D. Lorenz, “Wide- speed direct torque and flux control for interior PM synchrnous motors operating at voltage and current limits”, IEEE Trans. Ind. Applic., vol.49, no.1, pp.109-117, 2013. [37] J. S. Lee, R. D. Lorenz,M. A. Valenzuela, “Timeoptimal and loss-minimizing deadbeat-direct torque and flux control for interior permanent magnet synchrnous machines”, IEEE Trans. Ind. Applic., vol.50, no.3, pp.1880-1890, 2014. [38] H. Ghassemi,S. Vaez-Zadeh, “A very fast direct torque control for interior permanent magnet synchrnous motors start up”, Energy Covers. Manag., vol. 46, no. 5, pp. 715-726, Mar. 2005. [39] Z. D. Hurst, “Evaluation of dynamic trajectires for deadbeat direct torque and flux control during voltage limited operation,” M.S. thesis, WEMPEC, Univ. Wisconsin, Madison, WI, USA, 2011. [40] T. R. Obermann, Z. D. Hurst,R. D. Lorenz, “Deadbeatdirect torque & flux control motor drive over wide speed, torque and flux operating space using a single control law,” in IEEE Energy Convers. Congr. Expo., Sep. 2010, pp. 215-222. [41] F. J. Nola, “Power factor control system for AC induction motors,” Patent Number: 4,052,648, July 19th, 1976. [42] D. S. Kirschen, D. W. Novotny,T. A. Lipo, “On- line efficiency optimization of a variable frequency induction motor drive,” IEEE Trans. on Ind. Appl., vol. IA-21, no. 3, pp. 610-616, May 1985. [43] D. S. Kirschen, D. W. Novotny,T. A. Lipo, “Optimal efficiency control of an induction motor drive,” IEEE Trans. Energy Convers., vol. EC-2, no. 1, pp. 70-76, Mar. 1987. [44] G. Sousa, B. Bose,J. Cleland, “Fuzzy logic based on-line efficiency optimization control of an indirect vector-controlled induction motor drive,” IEEE Trans. Ind. Electron., vol. 42, no. 2, pp. 192-198, Apr. 1995. [45] G. O. Garcia, J. C.Mendes Luis, R. M. Stephan, and E. H. Watanabe, “An efficient controller for an adjustable speed induction motor drive,” IEEE Trans. Ind. Electron., vol. 41, no. 5, pp. 535-539, Oct. 1994. [46] M. N. Uddin,S. W. Nam, “New online loss-minimizationbased control of an induction motor drive,” IEEE Trans. Ind. Electron., vol. 23, no. 2, pp. 926-933, Mar. 2008. [47] C. Chakraborty,Y. Hori, “Fast efficiency optimization techniques for the indirect vector- controlled induction motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1070-1076, Jul./Aug. 2003. [48] F. Abrahamsen, F. Blaabjerg, J. Pedersen, P. Grabowski,P. Thogersen, “On the energy optimized control of standard and high efficiency induction motors in CT and HVAC applications,” IEEE Trans. on Ind. Appl., vol 34, no. 4, pp 822-831, Jul./Aug. 1998. [49] R. Mecke, “Energy-efficient control of induction machines with variable rotor flux,” Proc. of the 15th European Conf. on Power Electronics and Application (EPE), Sep. 2-6, Lille, France, 2013, pp.1-10[50] I. Kioskeridis, and N. Margaris, “ Loss minimization in induction motor adjustable-speed drives,” IEEE Trans. on Ind. Appl., vol 43, no. 1, pp 226-231, 1996. [51] J. F. Stumper,R. Kennel, "Real-time dynamic efficiency optimization for induction machines", American Control Conference (ACC), 2013, on page(s): 6589-6594. [52] S. M. Yang,R. D. Lorenz, "AC induction servo sizing for motion control applications via loss minimi- zing real-time flux control", IEEE Trans. Ind. Appl., vol. 28, no. 3, pp.589-593 1992. [53] W. Xu,R. D. Lorenz, “Dynamic loss minimization using improved deadbeat, direct-torque and flux control for interior permanent-magnet synchronous machines”, IEEE Trans. on Ind. Appl. vol. 50, no.2, Mar/Apr 2014. [54] Y. Wang, T. Ito,R. D. Lorenz, “Loss manipulation capabilities of deadbeat-direct torque and flux control induction machine drives”, IEEE Trans. on Ind. Appl., vol. 51, no.6, pp. 4554-4566, 2015. [55] M. Saur, B. Piepenbreier, W. Xu,R. D. Lorenz, “Implementation and evaluation of inverter loss modeling as part of DB-DTFC for loss minimization each switching period”, 16th European Conference on Power Electronics and Applications (EPE’14), Sept 2014. [56] B. F. Bradley, "Loss minimizing flux trajectories for repetitive known cyclical loading in deadbeat-direct torque and flux control (DB-DTFC) induction machine drives," Master's Thesis, Univ. Wisconsin, Madison, WI, 2012. [57] P. E. Ozimek, J. D. Hoffman, Y. Shi,R. D. Lorenz,“Dynamic loss minimizing control of DB-DTFC IM drives using a flux command look ahead filter,” in International Conference on Electrical Machines and Systems(ICEMS), Oct. 2014. [58] Y. Shi, Y. Wang,R. D. Lorenz, “Loss minimization for dynamic load trajectories on induction machine drives without torque performance degradation,” in IEEE 11th International Conference on Power Electronics and Drive Systems (PEDS),2015. [59] H. Kim, M. C. Harke,R. D. Lorenz, “Sensorless control of interior permanent magnet machine drives with zero-phase lag position estimation”, IEEE Trans. on Ind. Appl., vol. 39, no. 6, pp. 1726-1733, Nov/Dec, 2003. [60] R.W. Hejny,R. D. Lorenz, “Evaluating the practical low-speed limits for back-EMF tracking- based sensorless speed control using drive stiffness as a key metric”, IEEE Trans. on Ind. Appl., vol. 47, no. 3, pp. 1337-1343, May/Jun. 2011. [61] T. Matsuo,T. A.Lipo “A rotor parameter identification scheme for vector-controlled induction motor drives,” IEEE Trans. Ind. Appl., vol. IA-21, no.4, pp.624-632, May/Jun. 1985. [62] P. L. Jansen,R. D. Lorenz, “Transducerless position and velocity estimation in induction and salient AC machines,” IEEE Trans. Ind.Appl., vol. 31, pp. 240-247, 1995. [63] F. Briz, A. Diez,M. W. Degner, “Dynamic operation of carrier-signal-injection-based sensorless direct field-oriented AC drives,” IEEE Trans. Ind.Appl., vol. 36, pp. 1360-1368, 2000. [64] A. Consoli, G. Scarcella,A. Testa, “Industry application of zero-speed sensorless control techniques for PM synchronous motors,” IEEE Trans. Ind.Appl., vol. 37, pp. 513-521, 2001. [65] A. Consoli, G. Scarcella, G. Bottiglieri,A. Testa, “Harmonic Analysis of Voltage Zero-Sequence-Based Encoderless Techniques,” IEEE Trans. Ind.Appl., vol. 42, pp. 1548-1557, 2006. [66] M. W. Degner, “Flux, position and velocity estimation in ac machines using carrier signal injection,” Ph. D Thesis, Univ. Wisconsin, Madison, WI, 1998. [67] M. J. Corley,R. D. Lorenz, “rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds” IEEE Trans. Ind. Appl., vol.34, no. 4, 1998. [68] H. Toliyat,A. Hosseinyu, “Parameter estimation algorithm using spectral analysis for vector controlled induction motor drives,” in Proc. IEEE Int. Symp. Ind. Electron., pp. 90-95, Jun. 1993. [69] T. Aihara, A. Toba, T. Yanase, A. Mashimo,K. Endo, “Sensorless torque control of salient-pole synch-ronous motor at zero-speed operation,” IEEE Trans. Power Electron.vol. 14, pp. 202-208, 1999. [70] J. Ji-Hoon, S. Seung-Ki, H. Jung-Ik, K. Ide,M. Sawamura, "Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency," IEEE Trans. Ind.Appl., vol. 39, pp. 1031-1039, 2003. [71] J. Ji-Hoon, H. Jung-Ik, M. Ohto, K. Ide,S. Seung-Ki, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. on Ind.Appl., vol. 40, pp. 1595-1604, 2004. [72] Y. Wang, N. Niimura,R. D. Lorenz, “Real-time parameter identification and integration on deadbeat, direct torque and flux control without inducing additional torque ripple”, IEEE Energy Conversion Congress and Exposition (ECCE), pp. 2184-2191, Montreal, Canada, 2015. [73] S. Ogasawara,H. Akagi, “Implementation and position control performance of a position-sensorless IPM motor drive system based on magnetic saliency”, Trans. on Ind. Appl. vol. 34, no.4, Jul/Aug, 1998. [74] H. A. Toliyat, M. S. Arefeen, K. M. Rahman,D. Figoli, “Rotor time constant updating scheme for a rotor flux oriented induction motor drive”, Trans. on Power Electron. Vol. 14, no.5, Sept, 1999. |
[1] | Chunhua Liu, Yixiao Luo. Overview of Advanced Control Strategies for Electric Machines [J]. Chinese Journal of Electrical Engineering, 2017, 3(2): 9-9. |
[2] | Yongchang Zhang, Bo Xia, Haitao Yang, and Jose Rodriguez. Overview of Model Predictive Control for Induction Motor Drives [J]. Chinese Journal of Electrical Engineering, 2016, 2(1): 62-76. |
[3] | ZHANG Lijun, WU Jun, MENG Dejian,. Analysis of Friction Induced Mode Coupling Instability [J]. Journal of Mechanical Engineering, 2015, 51(21): 65-72. |
[4] | Lu Yimin;Mao Zongyuan;Zhang Bo. ANALYSIS OSCILLATIONS IN INDIRECT FIELD ORIENTED CONTROL OF INDUCTION MOTOR VIA POWER SPECTRA [J]. , 2004, 40(12): 5-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||