[1] M Cheng, M Tong.Development status and trend of electric vehicles in China.Chin. J. Elect. Eng., 2017, 3(2): 1-13. [2] K Chau, C Chan, C Liu.Overview of permanent magnet brushless drives for electric and hybrid electric vehicles.IEEE Trans. Ind. Electron., 2008, 55(6): 2246-2257. [3] M Cheng, W Hua, J Zhang, et al.Overview of stator-permanent magnet brushless machines.IEEE Trans. Ind. Electron., 2011, 58(11): 5087-5101. [4] W Ullah, F Khan, M Umair.Optimal rotor poles and structure for design of consequent pole permanent magnet flux switching machine.Chin. J. Elect. Eng., 2021, 7(1): 118-127. [5] J T Chen, Z Q Zhu.Winding configurations and optimal stator and rotor pole combination of flux-switching PM brushless AC machines.IEEE Trans. Energy Convers., 2010, 25(2): 293-302. [6] W Hua, M Cheng, Z Q Zhu, et al.Analysis and optimization of back EMF waveform of a flux-switching permanent magnet motor.IEEE Trans. Energy Convers., 2008, 23(3): 727-733. [7] W Hua, H Zhang, M Cheng, et al.An outer-rotor flux-switching permanent magnet machine with wedge-shaped magnets for in-wheel light traction.IEEE Trans. Ind. Electron., 2017, 64(1): 69-80. [8] H Chen, X Liu, N A O Demerdash, et al. Comparison and design optimization of a five-phase flux-switching PM machine for in-wheel traction applications.IEEE Trans. Energy Convers., 2019, 34(4): 1805-1817. [9] L Shao, W Hua, Z Q Zhu, et al.Influence of rotor-pole number on electromagnetic performance in 12-phase redundant switched flux permanent magnet machines for wind power generation.IEEE Trans. Ind. Appl., 2017, 53(4): 3305-3316. [10] M Tong, M Cheng, W Hua, et al.A single-phase on-board two-stage integrated battery charger for EVs based on a five-phase hybrid-excitation flux-switching machine.IEEE Trans. Veh. Technol., 2020, 69(4): 3793-3804. [11] M Tong, M Cheng, S Wang, et al.An on-board two-stage integrated fast battery charger for EVs based on a five-phase hybrid-excitation flux-switching machine.IEEE Trans. Ind. Electron., 2021, 68(1): 1780-1790. [12] W Hua, G Zhang, M Cheng.Flux-regulation theories and principles of hybrid-excited flux-switching machines.IEEE Trans. Ind. Electron., 2015, 63(9): 5359-5369. [13] G Zhang, W Hua, M Cheng, et al.Investigation of an improved hybrid-excitation flux-switching brushless machine for HEV/EV applications.IEEE Trans. Ind. Appl., 2015, 51(5): 3791-3799. [14] G Zhang, W Hua, M Cheng, et al.Design and comparison of two six-phase hybrid-excited flux-switching machines for EV/HEV applications.IEEE Trans. Ind. Electron., 2016, 63(1): 481-493. [15] W Hua, X Yin, G Zhang, et al.Analysis of two novel five-phase hybrid-excitation flux-switching machines for electric vehicles.IEEE Trans. Magn., 2014, 50(11): 8700305. [16] W Hua, P Su, M Tong, et al.Investigation of a five-phase E-core hybrid-excitation flux-switching machine for EV and HEV applications.IEEE Trans. Ind. Appl., 2017, 53(1): 124-133. [17] W Hua, M Cheng, G Zhang.A novel hybrid excitation flux-switching motor for hybrid vehicles.IEEE Trans. Magn., 2009, 45(10): 4728-4731. [18] D Ye, J Li, J Chen, et al.Study on steady-state errors for asymmetrical six-phase permanent magnet synchronous machine fault-tolerant predictive current control. IEEE Trans. Power Electron., 2020, 35(1): 640-651. [19] K Wang, Z Gu, C Liu, et al.Design and analysis of a five-phase SPM machine considering third harmonic current injection.IEEE Trans. Energy Convers., 2018, 33(3): 1108-1117. [20] B Wu, D Xu, J Ji, et al.Field-oriented control and direct torque control for a five-phase fault-tolerant flux-switching permanent-magnet motor.Chin. J. Elect. Eng., 2018, 4(4): 48-56. [21] E Levi, F Barrero, M J Duran.Advances in converter control and innovative exploitation of additional degrees of freedom for multiphase machines.IEEE Trans. Ind. Electron., 2016, 63(1): 433-448. [22] Y Sui, P Zheng, Z Yin, et al.Open-circuit fault-tolerant control of five-phase PM machine based on reconfiguring maximum round magneto-motive force.IEEE Trans. Ind. Electron., 2019, 66(1): 48-58. [23] M S R Saeed, W Song, B Yu, et al. Low-complexity deadbeat model predictive current control with duty ratio for five-phase PMSM drives.IEEE Trans. Power Electron., 2020, 35(11): 12085-12099. [24] D Wang, X Wang, S Jung.Reduction on cogging torque in flux-switching permanent magnet machine by teeth notching schemes. IEEE Trans. Magn., 2012, 48(11): 4228-4231. [25] M Shen, J Wu, C Gan, et al.Cogging torque reduction in FSPM machines with short magnets and stator lamination bridge structure. Proc. 42nd Annu. Conference IEEE Ind. Electron. Soc., Florence, Italy, 2016: 4307-4312. |