[1] Q Chen, Y Yan, G Liu, et al.Design of a new fault-tolerant permanent magnet machine with optimized salient ratio and reluctance torque ratio.IEEE Trans. Ind. Electron., 2020, 67(7): 6043-6054. [2] P Ramesh, N C Lenin.High power density electrical machines for electric vehicles-comprehensive review based on material technology.IEEE Trans. Magn., 2019, 55(11): 0900121. [3] S J Rind, Y Ren, Y Hu, et al.Configurations and control of traction motors for electric vehicles: A review.Chinese Journal of Electrical Engineering, 2017, 3(3): 1-17. [4] A EL-Refaie.Fractional-slot concentrated windings synchronous permanent-magnet machines: Opportunities and challenges.IEEE Trans. Ind. Electron., 2010, 57(1): 107-121. [5] A M El-Refaie, T M Jahns, D W Novotny. Analysis of surface permanent magnet machines with fractional-slot concentrated windings.IEEE Trans. Energy Convers., 2006, 21(1): 34-43. [6] S U Chung, J W Kim, Y D Chun, et al.Fractional-slot concentrated-winding PMSM with consequent pole rotor for a low-speed direct drive: Reduction of rare earth permanent magnet.IEEE Trans. Energy Convers., 2015, 30(1): 103-109. [7] S S Nair, V I Patel, J Wang.Post-demagnetization performance assessment for interior permanent magnet AC machines.IEEE Trans. Magn., 2016, 52(4): 8102810. [8] G Du, W Xu, J Zhu, et al.Power loss and thermal analysis for high-power high-speed permanent magnet machines.IEEE Trans. Ind. Electron., 2020, 67(4): 2722-2733. [9] G Choi, Y Zhang, T M Jahns.Experimental verification of rotor demagnetization in a fractional-slot concentrated- winding PM synchronous machine under drive fault conditions.IEEE Trans. Ind. Appl., 2017, 53(4): 3467-3475. [10] T Hosoi, H Watanabe, K Shima.Demagnetization analysis of additional permanent magnets in salient-pole synchronous machines with damper bars under sudden short circuits.IEEE Trans. Ind. Electron., 2012, 59(6): 2248-2456. [11] X Chen, J Wang.Magnet-motive force harmonic reduction techniques for fractional-slot non-overlapping winding configurations in permanent-magnet synchronous machines.Chinese Journal of Electrical Engineering, 2017, 3(2): 102-113. [12] A S Abdel-Khalik, S Ahmed, A M Massoud. Effect of multilayer windings with different stator winding connections on interior PM machines for EV applications.IEEE Trans. Magn., 2016, 52(2): 8100807. [13] W Zhao, J Zheng, J Ji, et al.Star and delta hybrid connection of fractional-slot concentrated-windings PM machine for low space harmonics.IEEE Trans. Ind. Electron., 2018, 65(12): 9266-9279. [14] X Chen, J Wang, V I Patel, et al.A nine-phase 18-slot 14-pole interior permanent magnet machine with low space harmonics for electric vehicle applications.IEEE Trans. Energy Convers., 2016, 31(3): 860-871. [15] A S Abdel-Khalik, S Ahmed, A M Massoud. Low space harmonics cancelation in double-layer fractional slot winding using dual multiphase winding.IEEE Trans. Magn., 2015, 51(5): 8104710. [16] J Zheng, W Zhao, J Ji, et al.Design to reduce rotor loss in fault-tolerant permanent-magnet machines.IEEE Trans. Ind. Electron., 2018, 65(11): 8476-8487. [17] L Alberti, E Fornasiero, N Bianchi.Impact of the rotor yoke geometry on rotor losses in permanent-magnet machines.IEEE Trans. Ind. Appl., 2012, 48(1): 98-105. [18] J Shen, H Hao, M Jin, et al.Reduction of rotor eddy current loss in high speed PM brushless machines by grooving retaining sleeve.IEEE Trans. Magn., 2013, 49(7): 3973-3976. [19] L Li, W Li, D Li, et al.Influence of sleeve thickness and various structures on eddy current losses of rotor parts and temperature field in surface mounted permanent-magnet synchronous motor.IET Electr. Power Appl., 2018, 12(8): 1183-1191. [20] X Wu, R Wrobel, P H Mellor, et al.A computationally efficient PM power loss mapping for brushless AC PM machines with surface-mounted PM rotor construction.IEEE Trans. Ind. Electron., 2015, 62(12): 7391-7401. [21] D Ede, K Atallah, W Jewell.Effect of axial segmentation of permanent magnets on rotor loss in modular permanent-magnet brushless machines.IEEE Trans. Ind. Appl., 2007, 43(5): 1207-1213. [22] H Fang, D Li, R Qu, et al.Rotor design and eddy-current loss suppression for high-speed machines with a solid-PM rotor.IEEE Trans. Ind. Appl., 2018, 55(1): 448-457. [23] M Zhou, X Zhang, W Zhao, et al.Influence of magnet shape on the cogging torque of a surface-mounted permanent magnet motor.Chinese Journal of Electrical Engineering, 2019, 5(4): 40-50. [24] S S Nair, V I Patel, J Wang.Post-demagnetization performance assessment for interior permanent magnet AC machines.IEEE Trans. Magn., 2016, 52(4): 8102810. [25] K Yamazaki, Y Fukushima, M Sato.Loss analysis of permanent magnet motors with concentrated windings-variation of magnet eddy-current loss due to stator and rotor shapes.IEEE Trans. Ind. Appl., 2009, 45(4): 1334-1342. [26] J Wang, K Atallah, R Chin, et al.Rotor eddy-current loss in permanent-magnet brushless AC machines.IEEE Trans. Magn., 2010, 46(7): 2701-2707. [27] K Yamazaki, M Shina, Y Kanou, et al.Effect of eddy current loss reduction by segmentation of magnets in synchronous motors: Difference between interior and surface types.IEEE Trans. Magn., 2009, 45(10): 4756-4759. [28] Y Yang, B Bilgin, M Kasprzak, et al.Thermal management of electric machines.IET Electr. Power Appl., 2015, 7(2): 104-116. [29] V Madonna, P Giangrande, M Galea, et al.Thermal analysis of fault-tolerant electrical machines for aerospace actuators.IET Electr. Power Appl., 2019, 13(7): 843-852. |