中国电气工程学报(英文) ›› 2022, Vol. 8 ›› Issue (1): 1-15.doi: 10.23919/CJEE.2022.000001
• • 下一篇
收稿日期:
2021-07-07
修回日期:
2021-10-02
接受日期:
2021-11-19
出版日期:
2022-03-25
发布日期:
2022-04-08
Guanhong Song, Bo Cao, Liuchen Chang*
Received:
2021-07-07
Revised:
2021-10-02
Accepted:
2021-11-19
Online:
2022-03-25
Published:
2022-04-08
Contact:
*E-mail: . [J]. 中国电气工程学报(英文), 2022, 8(1): 1-15.
Guanhong Song, Bo Cao, Liuchen Chang. Review of Grid-forming Inverters in Support of Power System Operation[J]. Chinese Journal of Electrical Engineering, 2022, 8(1): 1-15.
[1] R Vijayapriya, P Raja, M P Selvan.A modified active power control scheme for enhanced operation of PMSG-based WGs.IEEE Trans. Sustain. Energy, 2018, 9(2): 630-638. [2] A Jäger-Waldau. PV Status Report2019, EUR 29938 EN, Publications Office of the European Union, Luxembourg, 2019, ISBN 978-92-76-12608-9, doi: 10.2760/326629, JRC118058. [3] REN21. Renewables2020 Global Status Report (Paris: REN21 Secretariat), 2020, ISBN 978-3-948393-00-7. [4] IRENA (2018). Renewable capacity statistics 2018, International Renewable Energy Agency (IRENA), Abu Dhabi. [5] REN21.2017 Renewables Global Futures Report: Great debates towards 100% renewable energy (Paris: REN21 Secretariat), ISBN 978-3-9818107-4-5. [6] IRENA (2015). Battery Storage for Renewables: Market Status and Technology Outlook, International Renewable Energy Agency (IRENA), Ruud Kempener. [7] IEA (2021). Global EV Outlook 2021, IEA, Paris https://www.iea.org/reports/global-ev-outlook-2021. [8] Q Liu, T Caldognetto, S Buso.Review and comparison of grid-tied inverter controllers in microgrids.IEEE Trans. Power Electro., 2020, 35(7): 7624-7639. [9] G Wang, G Konstantinou, C D Townsend, et al.A review of power electronics for grid connection of utility-scale battery energy storage systems.IEEE Trans. Sustain. Energy, 2016, 7(4): 1778-1790. [10] M S Alam, F S Al-Ismail, A Salem, et al. High-level penetration of renewable energy sources into grid utility: Challenges and solutions.IEEE Access, 2020, 8: 190277-190299. [11] B Mohandes, M S El Moursi, N Hatziargyriou, et al. A review of power system flexibility with high penetration of renewables.IEEE Trans. Power Syst., 2019, 34(4): 3140-3155. [12] J Rocabert, A Luna, F Blaabjerg, et al.Control of power converters in AC microgrids.IEEE Trans. Power Electron., 2012, 27(11): 4734-4749. [13] W Du, F Tuffner, K P Schneider, et al.Modeling of grid-forming and grid-following inverters for dynamic simulation of large-scale distribution systems.IEEE Trans. Power Deliv., 2020, 36(4): 2035-2045. [14] S Xu, Y Xue, L Chang.Review of power system support functions for inverter-based distributed energy resources- standards, control algorithms, and trends.IEEE Open J. Power Electron., 2021, 2: 88-105. [15] X Zhao, L Chang, R Shao, et al.Power system support functions provided by smart inverters: A review.CPSS Trans. Power Electron. Appl., 2018, 3(1): 25-35. [16] X Meng, J Liu, Z Liu.A generalized droop control for grid-supporting inverter based on comparison between traditional droop control and virtual synchronous generator control.IEEE Trans. Power Electron., 2019, 34(6): 5416-5438. [17] Q C Zhong, G C Konstantopoulos.Current-limiting droop control of grid-connected inverters.IEEE Trans. Ind. Electron., 2017, 64(7): 5963-5973. [18] M S Golsorkhi, D D C Lu. A control method for inverter-based islanded microgrids based on V-I droop characteristics.IEEE Trans. Power Deliv., 2015, 30(3): 1196-1204. [19] R H Lasseter, Z Chen, D Pattabiraman.Grid-forming inverters: A critical asset for the power grid.IEEE J. Emerg. Sel. Top. Power Electron., 2020, 8(2): 925-935. [20] B Mirafzal, A Adib.On grid-interactive smart inverters: Features and advancements.IEEE Access, 2020, 8: 160526-160536. [21] P Unruh, M Nuschke, P Strau, et al.Overview on grid-forming inverter control methods.Energies, 2020, 13(10): 2589-2609. [22] B Johnson, M Rodriguez, M Sinha, et al.Comparison of virtual oscillator and droop control. [23] M A Awal, H Yu, S Lukic, et al.Droop and oscillator based grid-forming converter controls: A comparative performance analysis.Front. Energy Res., 2020, 8: 168-183. [24] J Xiao, Y Jia, B Jia, et al.An inertial droop control based on comparisons between virtual synchronous generator and droop control in inverter-based distributed generators.Energy Reports, 2020, 6: 104-112. [25] H Xu, C Yu, C Liu, et al.An improved virtual inertia algorithm of virtual synchronous generator.J. Mod. Power Syst. Clean Energy, 2020, 8(2): 377-386. [26] Y Peng, Y Li, K Y Lee, et al.Coordinated control strategy of PMSG and cascaded H-bridge STATCOM in dispersed wind farm for suppressing unbalanced grid voltage.IEEE Trans. Sustain. Energy, 2021, 12(1): 349-359. [27] M Ganjian-Aboukheili, M Shahabi, Q Shafiee, et al.Seamless transition of microgrids operation from grid-connected to islanded mode.IEEE Trans. Smart Grid, 2020, 11(3): 2106-2114. [28] J Marchgraber, W Gawlik.Investigation of black-starting and islanding capabilities of a battery energy storage system supplying a microgrid consisting of wind turbines, impedance- and motor-loads.Energies, 2020, 13(19): 5170-5193. [29] H Jain, G S Seo, E Lockhart, et al.Blackstart of power grids with inverter-based resources. [30] P Roos.A comparison of grid-forming and grid-following control of VSCs. Uppsala: Uppsala University, 2020. [31] X Huang, K Wang, J Qiu, et al.Decentralized control of multi-parallel grid-forming DGs in islanded microgrids for enhanced transient performance.IEEE Access, 2019, 7: 17958-17968. [32] F Wu, L Zhang, J Duan.A new two-phase stationary-frame-based enhanced PLL for three-phase grid synchronization.IEEE Trans. Circuits Syst. II Express Briefs, 2015, 62(3): 251-255. [33] B Liu, F Zhuo, Y Zhu, et al.A three-phase PLL algorithm based on signal reforming under distorted grid conditions.IEEE Trans. Power Electron., 2015, 30(9): 5272-5283. [34] F Xiao, L Dong, L Li, et al.A frequency-fixed SOGI-based PLL for single-phase grid-connected converters.IEEE Trans. Power Electron., 2017, 32(3): 1713-1719. [35] D Venkatramanan, V John.Dynamic phasor modeling and stability analysis of SRF-PLL-based grid-tie inverter under islanded conditions.IEEE Trans. Ind. Appl., 2020, 56(2): 1953-1965. [36] L Hadjidemetriou, E Kyriakides, F Blaabjerg.A new hybrid PLL for interconnecting renewable energy systems to the grid.IEEE Trans. Ind. Appl., 2013, 49(6): 2709-2719. [37] A Ranjan, S Kewat, B Singh.DSOGI-PLL with in-loop filter based solar grid interfaced system for alleviating power quality problems.IEEE Trans. Ind. Appl., 2021, 57(1): 730-740. [38] M Xie, H Wen, C Zhu, et al.DC offset rejection improvement in single-phase SOGI-PLL algorithms: Methods review and experimental evaluation.IEEE Access, 2017, 5: 12810-12819. [39] L Feola, R Langella, A Testa.On the effects of unbalances, harmonics and interharmonics on PLL systems.IEEE Trans. Instrum. Meas., 2013, 62(9): 2399-2409. [40] U K Singh, A Basak.Performance study of different PLL schemes under unbalanced grid voltage. [41] S Golestan, J M Guerrero, J C Vasquez.Three-phase PLLs: A review of recent advances.IEEE Trans. Power Electron., 2017, 32(3): 1894-1907. [42] S Golestan, J M Guerrero, J C Vasquez.Single-phase PLLs: A review of recent advances.IEEE Trans. Power Electron., 2017, 32(12): 9013-9030. [43] Y Han, M Luo, X Zhao, et al.Comparative performance evaluation of orthogonal-signal-generators-based single-phase PLL algorithms: A survey.IEEE Trans. Power Electron., 2016, 31(5): 3932-3944. [44] J Xu, H Qian, Y Hu, et al.Overview of SOGI-based single-phase phase-locked loops for grid synchronization under complex grid conditions.IEEE Access, 2021, 9: 39275-39291. [45] Underwrit. Lab., UL 1741 Supplement SA: Grid Support Utility Interactive Inverters and Converters, 2016. [46] California Public Utilities Commission, Recommendations for Updating the Technical Requirements for Inverters in Distributed Energy Resources, Smart Invert. Work. Gr. Recomm., 2014. [47] IEEE1547-2018: IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces, IEEE Std. 1547, 2018. [48] Y Deng, Y Tao, G Chen, et al.Enhanced power flow control for grid-connected droop-controlled inverters with improved stability.IEEE Trans. Ind. Electron., 2017, 64(7): 5919-5929. [49] Z Li, C Zang, P Zeng, et al.Fully distributed hierarchical control of parallel grid-supporting inverters in islanded AC microgrids.IEEE Trans. Ind. Informatics, 2018, 14(2): 679-690. [50] K De Brabandere, B Bolsens, J Van den Keybus, et al. A voltage and frequency droop control method for parallel inverters.IEEE Trans. Power Electron., 2007, 22(4): 1107-1115. [51] Z Shi, J Li, H I Nurdin, et al.Comparison of virtual oscillator and droop controlled islanded three-phase microgrids.IEEE Trans. Energy Convers., 2019, 34(4): 1769-1780. [52] H Mahmood, D Michaelson, J Jiang.Reactive power sharing in islanded microgrids using adaptive voltage droop control.IEEE Trans. Smart Grid, 2015, 6(6): 3052-3060. [53] H Bevrani, S Shokoohi.An intelligent droop control for simultaneous voltage and frequency regulation in islanded microgrids.IEEE Trans. Smart Grid, 2013, 4(3): 1505-1513. [54] U B Tayab, M A Bin Roslan, L J Hwai, et al. A review of droop control techniques for microgrid.Renew. Sustain. Energy Rev., 2017, 76: 717-727. [55] J Alipoor, Y Miura, T Ise.Power system stabilization using virtual synchronous generator with alternating moment of inertia.IEEE J. Emerg. Sel. Top. Power Electron., 2015, 3(2): 451-458. [56] K Shi, H Ye, W Song, et al.Virtual inertia control strategy in microgrid based on virtual synchronous generator technology.IEEE Access, 2018, 6: 27949-27957. [57] J Liu, Y Miura, T Ise.Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators.IEEE Trans. Power Electro., 2016, 31(5): 3600-3611. [58] Y Du, J M Guerrero, L Chang, et al.Modelling, analysis, and design of a frequency-droop-based virtual synchronous generator for microgrid applications. [59] B B Johnson, M Sinha, N G Ainsworth, et al.Synthesizing virtual oscillators to control islanded inverters.IEEE Trans. Power Electron., 2016, 31(8): 6002-6015. [60] M Lu, S Dutta, V Purba, et al.A pre-synchronization strategy for grid-forming virtual oscillator controlled inverters. [61] J Li, J E Fletcher, D G Holmes, et al.Developing a machine equivalent inertial response for a virtual oscillator controlled inverter in a machine-inverter based microgrid. [62] M Liu, W Li, C Wang, et al.Reliability evaluation of large scale battery energy storage systems.IEEE Trans. Smart Grid, 2017, 8(6): 2733-2743. [63] S A Amamra, K Meghriche, A Cherifi, et al.Multilevel inverter topology for renewable energy grid integration.IEEE Trans. Ind. Electron., 2017, 64(11): 8855-8866. [64] L Yin, Z Zhao, T Lu, et al.An improved DC-link voltage fast control scheme for a PWM rectifier-inverter system. [65] J Lu, S Golestan, M Savaghebi, et al.An enhanced state observer for DC-link voltage control of three-phase AC/DC converters.IEEE Trans. Power Electron., 2018, 33(2): 936-942. [66] M Merai, M W Naouar, I Slama-Belkhodja.An improved DC-link voltage control strategy for grid connected converters.IEEE Trans. Power Electron., 2018, 33(4): 3575-3582. [67] L Huang, H Xin, Z Wang, et al.A virtual synchronous control for voltage-source converters utilizing dynamics of DC-link capacitor to realize self-synchronization. [68] C L Chen, Y Wang, J S Lai, et al.Design of parallel inverters for smooth mode transfer microgrid applications.IEEE Trans. Power Electron., 2010, 25(1): 6-15. [69] G G Talapur, H M Suryawanshi, L Xu, et al.A reliable microgrid with seamless transition between grid connected and islanded mode for residential community with enhanced power quality.IEEE Trans. Ind. Appl., 2018, 54(5): 5246-5255. [70] W Zhang, H Liu, W Wang, et al.Seamless transfer scheme for parallel PV inverter system. [71] S Sajadxan, R Ahmad.Model predictive control of dual-mode operations Z-source inverter: Islanded and grid-connected. [72] X Li, H Zhang, M B Shadmand, et al.Model predictive control of a voltage-source inverter with seamless transition between islanded and grid-connected operations. [73] J Wang, A Pratt, M Baggu.Integrated synchronization control of grid-forming inverters for smooth microgrid transition. [74] J Wang, N C P Chang, X Feng, et al. Design of a generalized control algorithm for parallel inverters for smooth microgrid transition operation.IEEE Trans. Ind. Electron., 2015, 62(8): 4900-4914. [75] W Sun, C C Liu, L Zhang.Optimal generator start-up strategy for bulk power system restoration.IEEE Trans. Power Syst., 2011, 26(3): 1357-1366. [76] Y Tang, J Dai, Q Wang, et al.Frequency control strategy for black starts via PMSG-based wind power generation.Energies, 2017, 10(3): 358-371. [77] M Lu, G S Seo, M Sinha, et al.Adaptation of commercial current-controlled inverters for operation with virtual oscillator control. [78] M Braun, J Brombach, C Hachmann, et al.The future of power system restoration: Using distributed energy resources as a force to get back online.IEEE Power & Energy Mag., 2018, 16(6): 30-41. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||