[1] D. Casadei, F. Profumo, G. Serra,A. Tani, “FOC and DTC: two viable schemes for induction motors torque control,” IEEE Trans. Power Electron., vol. 17, no. 5, pp. 779-787, Sep. 2002. [2] J. Rodriguez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortes,U. Ammann,“Predictive current control of a voltage source inverter,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 495-503, 2007. [3] P. Cortes, J. Rodriguez, P. Antoniewicz,M. Kazmierkowski, “Direct power control of an afe using predictive control,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2516-2523, sept. 2008. [4] Y. Zhang, W. Xie, Z. Li,Y. Zhang, “Model predictive direct power control of a PWM rectifier with duty cycle optimization,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5343-5351, 2013. [5] S. Kouro, P. Cortes, R. Vargas, U. Ammann,J. Rodriguez, “Model predictive control—a simple and powerful method to control power converters,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1826-1838, June 2009. [6] D. E. Quevedo, R. P. Aguilera, M. A. Perez, P. Cortes,R. Lizana, “Model predictive control of an AFE rectifier with dynamic references,” IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3128-3136, 2012. [7] S. Kwak, U. C. Moon,J. C. Park, “Predictive-control-based direct power control with an adaptive parameter identification technique for improved AFE performance,” IEEE Trans. Power Electron., vol. 29, no. 11, pp. 6178-6187, 2014. [8] J. Scoltock, T. Geyer,U. Madawala, “Model predictive direct power control for grid-connected npc converters,” IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5319-5328, Sept 2015. [9] D. K. Choi,K. B. Lee, “Dynamic performance improvement of AC/DC converter using model predictive direct power control with finite control set,” IEEE Trans. Ind. Electron., vol. 62, no. 2, pp. 757-767, 2015. [10] S. Vazquez, J. I. Leon, L. G. Franquelo, J. M. Carrasco, O. Martinez, J. Rodriguez, P. Cortes,S. Kouro, “Model predictive control with constant switching frequency using a discrete space vector modulation with virtual state vectors,” inProc. IEEE Int.Conf. Industrial Technology, pp.1-6, 2009. [11] S. A. Davari, D. A. Khaburi,R. Kennel, “An improved FCSMPC algorithm for an induction motor with an imposed optimized weighting factor, ” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1540-1551, 2012. [12] Y. Zhang,H. Yang, “Generalized two-vector-based model predictive torque control of induction motor drives,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3818-3829, 2015. [13] J. Rodriguez, R. M. Kennel, J. R. Espinoza, M. Trincado, C. A. Silva,C. A. Rojas, “High-performance control strategies for electrical drives: An experimental assessment,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 812-820, 2012. [14] H. Miranda, P. Cortes, J. Yuz,J. Rodriguez, “Predictive torque control of induction machines based on state-space models,” IEEE Trans. Ind. Electron., vol.56, no.6, pp. 1916-1924, June 2009. [15] Y. Zhang,H. Yang, “Model predictive torque control of induction motor drives with optimal duty cycle control,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6593-6603, 2014. [16] C. A. Rojas, J. Rodriguez, F. Villarroel, J. R. Espinoza, C. A. Silva,M. Trincado, “Predictive torque and flux control without weighting factors,” IEEE Trans. Ind. Electron., vol. 60, no.2, pp. 681-690, Feb. 2013. [17] C. K. Lin, T. H. Liu, J. t. Yu, L. C. Fu, and C. F. Hsiao, “Model free predictive current control for interior permanent-magnet synchronous motor drives based on current difference detection technique,” IEEE Trans. Ind. Electron., vol. 61, no. 2, pp. 667-681, 2014. [18] Y. Zhang, S. Gao,W. Xu, “An improved model predictive current control of permanent magnet synchronous motor drives,”2016 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2868-2874, March 2016. [19] F. Wang, S. Li, X. Mei, W. Xie, J. Rodriguez,R. M. Kennel, “Model-based predictive direct control strategies for electrical drives: an experimental evaluation of PTC and PCC methods, ” IEEE Trans. Ind. In format., vol.11, no.3, pp.671-681, June 2015. [20] Y. Zhang, S. Gao,J. Liu, “An improved model predictive control for permanent magnet synchronous motor drives,”IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), pp. 1877-1883, May 2016. [21] N. L. Nguyen, M. Fadel,A. Llor, “A new approach to predictive torque control with dual parallel PMSM system,” inIEEE International Conference on Industrial Technology (ICIT), pp. 1806-1811, Feb 2013. [22] V. Ambrozic, R. Fiser,D. Nedeljkovic, “Direct current control-a new current regulation principle,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 495-503, 2003. [23] Y. Zhang,W. Xie, “Low complexity model predictive control—single vector-based approach,” IEEE Trans. Power Electron., vol. 29, no.10, pp. 5532-5541, 2014. [24] C. Xia, T. Liu, T. Shi,Z. Song, “A simplified finitecontrolset model-predictive control for power converters,” IEEE Trans. Ind. In format., vol. 10, no. 2, pp. 991-1002, 2014. [25] Y. Zhang,Q. Zhang, “Relationship between finite control set model predictive control and direct current control for three phase voltage source converters,”IEEE International Power Electronics and Application Conference and Exposition, pp. 831-836, 2014. [26] M. Nemec, K. Drobnic, D. Nedeljkovic,V. Ambrozic, “Direct current control of a synchronous machine in field coordinates,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 4052-4061, 2009. [27] Y. Zhang, H. Yang,X. Wei, “Model predictive control of permanent magnet synchronous motors based on fast vector selection,” Transactions of China Electrotechnical Society, vol. 31, no. 6, pp. 66-73, 2016. [28] Y. Zhang, W. Xie, Z. Li,Y. Zhang, “Low-complexity model predictive power control: double-vector-based approach,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 5871-5880, 2014. [29] Y. Zhang, Y. Bai,H. Yang, “A universal multiple-vectorbased model predictive control of induction motor drives,” IEEE Trans. Power Electron., vol. PP, no. 99, pp. 1-1, 2017. [30] X. Zhang, B. Hou,Y. Mei, “Deadbeat predictive current control of permanent-magnet synchronous motors with stator current and disturbance observer,” IEEE Trans. Power Electron., vol. 32, no. 5, pp. 3818-3834, May 2017. [31] L. Tarisciotti, P. Zanchetta, A. Watson, J. C. Clare, M. Degano,S. Bifaretti, “Modulated model predictive control for a three-phase active rectifier, ” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1610-1620, Mar. 2015. [32] E. Fuentes, C. A. Silva,R. M. Kennel, “MPC implementation of a quasi-time-optimal speed control for a PMSM drive, with inner modulated-FS-MPC torque control,” IEEE Trans.Ind. Electron., vol. 63, no. 6, pp. 3897-3905, Jun. 2016. [33] P. Cortes, J. Rodriguez, C. Silva,A. Flores, “Delay compensation in model predictive current control of a three-phase inverter,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1323-1325, 2012. [34] P. Karamanakos, T. Geyer,R. Kennel, “On the choice of norm in finite control set model predictive control,” IEEE Trans. Power Electron., vol. PP, no. 99, p.1-1, 2017. [35] J. Yang, W. H. Chen, S. Li, L. Guo,Y. Yan, “Disturbance/ uncertainty estimation and attenuation techniques in PMSM drives —a survey,” IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 3273-3285, Apr. 2017. [36] W. Wang, X. Xi, H. Liu, S. Kai,H. Wu, “Expanding parameter stability region for incremental predictive control strategy of current,” Transactions of China Electrotechnical Society, vol. 29, no. 3, pp. 50-56, 2014. [37] C. D. Townsend, G. Mirzaeva,G. C. Goodwin, “Dead time compensation for model predictive control of power inverters,” IEEE Trans. Power Electron., vol. 32, no. 9, pp. 7325-7337, Sept 2017. [38] A. Kuznietsov, S. Wolf,T. Happek, “Model predictive control of a voltage source inverter with compensation of dead time effects,”IEEE International Conference on Industrial Technology (ICIT), pp. 2532-2536, March 2015. |