[1] X. H. Wang, Q. F. Li, S. H. Wang,Q. F. Li, “Analytical calculation of air-gap magnetic field distribution and instantaneous characteristics of brushless DC motors,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 424-432, Sept. 2003. [2] B. N. Cassimere, S. D. Sudhoff,D. H. Sudhoff, “Analytical design model for surface-mounted permanent magnet synchronous machines,” IEEE Trans. Energy Convers., vol. 24, no. 2, pp. 347-357, Jun. 2009. [3] L. Zhu, S. Z. Jiang, Z. Q. Zhu,C. C. Chan, “Analytical methods for minimizing cogging torque in permanent magnet machines,” IEEE Trans. Magn., vol. 45, no. 4, pp. 2023-2031, Apr. 2009. [4] N. Boules, “Prediction of no-load flux density distribution in permanent magnet machines,” IEEE Trans. Ind. Appl., vol. IA-21, no. 4, pp. 633-643, May 1985. [5] Z. Q. Zhu, D. Howe, E. Bolte,B. Ackermann, “Instantaneous magnetic field distribution in brushless permanent magnet dc motors. Part I: open-circuit field,” IEEE Trans. Magn., vol. 29, no. 1, pp. 124-135, Jan. 1993. [6] Z. Q. Zhu,D. Howe, “Instantaneous magnetic field distribution in brushless permanent magnet dc motors. Part II: Armature-reaction field,” IEEE Trans. Magn., vol. 29, no. 1, pp. 136-142, Jan. 1993. [7] Z. Q. Zhu,D. Howe, “Instantaneous magnetic field distribution in brushless permanent magnet dc motors. Part III: effect of stator slotting,” IEEE Trans. Magn., vol. 29, no. 1, pp. 143-151, Jan. 1993. [8] Z. Q. Zhu,D. Howe, “Instantaneous magnetic field distribution in permanent magnet brushless dc motors. Part IV: Magnetic field on load,” IEEE Trans. Magn., vol. 29, no. 1, pp. 152-158, Jan. 1993. [9] Z. Q. Zhu, D. Howe,C. C. Chan, “Improved analytical model for predicting the magnetic field distribution in brushless permanent magnet machines,” IEEE Trans. Magn., vol. 38, no. 1, pp. 229-238, Jan. 2002. [10] D. Zarko, D. Ban,T. A. Lipo, “Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance,” IEEE Trans. Magn., vol. 42, no. 7, pp. 1828- 1837, Jul. 2006. [11] Z. J. Liu,J. T. Li, “Accurate prediction of magnetic field and magnetic forces in permanent magnet motors using an analytical solution,” IEEE Trans. Energy Conver., vol. 23, no. 3, pp. 717-726, Sept. 2008. [12] Z. J. Liu, J. T. Li,Q. Jiang, “An improved analytical solution for predicting magnetic forces in permanent magnet motors,” J. Appl. Phys., vol. 103, no. 7, pp.4421, 2008. [13] Z. Q. Zhu, L. J. Wu,Z. P. Xia, “An accurate subdomain model for magnetic field computation in slotted surface-mounted permanent magnet machines,” IEEE Trans. Magn., vol. 46, no. 4, pp. 1100-1115, Apr. 2010. [14] L. J. Wu, Z. Q. Zhu, D. A. Staton, M. Popescu,D. Hawkins, “Comparison of analytical models of cogging torque in surface mounted PM machines,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2414-2425, Jun. 2012. [15] X. Y. Zhu, M. Cheng, W. X. Zhao, J. Z. Zhang,W. Hua, “An overview of hybrid excited electric machine capable of field control,” Trans. of China Electrotechnical Society, vol. 23, no. 1, pp. 30-39, Jan. 2008. [16] J. A. Tapia, F. Leonardi,T. A. Lipo, “Consequent pole permanent magnet machine with extended field-weakening capability,” IEEE Trans. Ind. Appl., vol. 39, no. 6, pp. 1704- 1709, Nov. 2003. [17] Q. Zhang, S. R. Huang,G. D. Xie, “Design and experimental verification of hybrid excitation machine with isolated magnetic paths,” IEEE Trans. Energy Conver., vol. 25, no. 4, pp. 993-1000, Dec. 2010. [18] W. W. Geng, Z. R. Zhang, K. Jiang,Y. G. Yan, “A new parallel hybrid excitation machine: permanent-magnet/variablereluctance machine with bidirectional field-regulating capability,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1372-1381, March 2015. [19] T. Kosaka, M. Sridharbabu, M. Yamamoto,N. Matsui, “Design studies on hybrid excitation motor for main spindle drive in machine tools,” IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 3807-3813, Nov. 2010. [20] Z. H. Chen, B. Wang, Z. Chen,Y. G. Yan, “Comparison of flux regulation ability of the hybrid excitation doubly salient machines,” IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3155-3166, July, 2014. [21] L. Xu, W. X. Zhao, J. H. Ji, G. H. Liu, Y. Du, Z. Y. Fang,L. H. Mo, “Design and analysis of a new linear hybrid excited flux reversal motor with inset permanent magnets,” IEEE Trans. Magn., vol. 50, no. 11, Nov. 2014. [22] Y. Wang,Z. Q. Deng, “Comparison of hybrid excitation topologies for flux-switching machines,” IEEE Trans. Magn., vol. 48, no. 9, pp. 2518-2527, Sep. 2012. [23] T. Mizuno, K. Nagayama, T. Ashikaga,T. Kobayashi, “Basic principles and characteristics of hybrid excitation synchronous machine”, Elect. Eng. Jpn., vol. 117, no.5, pp.110-123, 1996. [Online]. Available: “Basic principles and characteristics of hybrid excitation synchronous machine”, Elect. Eng. Jpn., vol. 117, no.5, pp.110-123, 1996. [Online]. Available: http://dx.doi.org/10.1002/ eej.4391170510. [24] M. Aydin, S. R. Huang,T. A. Lipo, “A new axial flux surface mounted permanent magnet machine capable of field control,” inConf. Rec. IEEE IAS Annu. Meeting, pp.1250- 1257, Oct. 2002. [25] M. Aytin, S. R. Huang,T. A. Lipo, “Design, analysis, and control of a hybrid field controlled axial flux permanent magnet motor,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp.78-87, Jan. 2010. [26] Z. R. Li, Y. S. Li,X. H. Li, “Flux control of a CPPM machine for both a wide speed range and high efficiency,” IEEE Trans. Power Electron., vol. 29, no. 9, pp.4866-4876, Sept. 2014. [27] Z. R. Li, Y. S. Li,X. H. Li, “A speed sensor faulttolerant control of the CPPM machine for electric vehicle,” Elektronika ir Elektrotechnika, vol. 20, no. 7, pp.27-33, 2014. [28] J. Wu, N. Jin, Z. F. Dou,J. Yin, “A dual consequent hybrid excitation synchronous machine,” China Patent 201510850427.5, Feb. 15, 2017. |