中国电气工程学报(英文) ›› 2024, Vol. 10 ›› Issue (1): 63-85.doi: 10.23919/CJEE.2023.000048
收稿日期:
2023-08-17
修回日期:
2023-10-09
接受日期:
2023-11-13
出版日期:
2024-03-25
发布日期:
2024-04-10
Ming Cheng1,*, Jiawei Zhou1, Wei Qian2, Bo Wang1, Chenchen Zhao1, Peng Han3
Received:
2023-08-17
Revised:
2023-10-09
Accepted:
2023-11-13
Online:
2024-03-25
Published:
2024-04-10
Contact:
* E-mail: mcheng@seu.edu.cn
About author:
Ming Cheng received the B.Sc. and M.Sc. degrees from the Department of Electrical Engineering, Southeast University, Nanjing, China, in 1982 and 1987, respectively, and the Ph.D. degree from the Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, China, in 2001, all in Electrical Engineering.Supported by:
. [J]. 中国电气工程学报(英文), 2024, 10(1): 63-85.
Ming Cheng, Jiawei Zhou, Wei Qian, Bo Wang, Chenchen Zhao, Peng Han. Advanced Electrical Motors and Control Strategies for High-quality Servo Systems - A Comprehensive Review*[J]. Chinese Journal of Electrical Engineering, 2024, 10(1): 63-85.
[1] N Minorsky.Directional stability of automatically steered bodies. Journal of the American Society for Naval Engineers, 1922, 34(2): 280-309. [2] H Nyquist.Regeneration theory. Bell System Technical Journal, 1932, 11(1): 126-147. [3] H L Hazen.Theory of servomechanisms. Journal of Franklin Institute, 1934: 209-331. [4] G S Brown, D P Campbell.Principles of servomechanisms. 1st ed. New York: John Wily & Sons, 1948. [5] TOC-servo motors and drives market size, share, industry report, 2028. [2023-08-17]. https://www.imarcgroup.com/servo-motors-drives-market/toc. [6] M Cheng.Servo motor and servo system, in small & special electrical machines and systems. 3rd ed. Beijing: China Electric Power Press, 2022. [7] P M Will, M Zeldman. A high-performance AC position servo using a DC motor. IEEE Transactions on Industrial Electronics & Control Instrumentation, 1967, IECI-14(2): 41-46. [8] R Lessmeier, W Schumacher, W Leonhard. Microprocessor- controlled AC-servo drives with synchronous or induction motors: Which is preferable. IEEE Transactions on Industry Applications, 1986, IA-2(5): 812-819. [9] H Haneda, A Nagao.Digitally controlled optimal position servo of induction-motors. IEEE Transactions on Industrial Electronics, 1989, 36(3): 349-360. [10] T S Low, T H Lee, K J Tseng, et al.Servo performance of a BLDC drive with instantaneous torque control. IEEE Transactions on Industry Applications, 1992, 28(2): 455-462. [11] P Pillay, R Krishnan.Application characteristics of permanent-magnet synchronous and brushless DC motors for servo drives. IEEE Transactions on Industry Applications, 1991, 27(5): 986-996. [12] Y Liu, L Li, S Chen, et al.Ultra-precision motion stage control technology for IC lithography. Laser & Optoelectronics Progress, 2022, 59(9): 0922013. [13] X Zhao, S Zhang.Image-feature-based integrated path planning and control for spacecraft rendezvous operations. Journal of Guidance Control and Dynamics, 2022, 45(5): 830-845. [14] S Zhang, Y Zhou, H Zhang, et al.Advances in ultra- precision machining of micro-structured functional surfaces and their typical applications. International Journal of Machine Tools & Manufacture, 2019, 142: 16-41. [15] Y Zeng, M Cheng, G Liu, et al.Effects of magnet shape on torque capability of surface-mounted permanent magnet machine for servo applications. IEEE Transactions on Industrial Electronics, 2020, 67(4): 2977-2990. [16] H Dong, X Yang, H Gao, et al.Practical terminal sliding-mode control and its applications in servo systems. IEEE Transactions on Industrial Electronics, 2023, 70(1): 752-761. [17] W Lord, J Hwang.DC servo motors: Modeling and parameter determination. IEEE Transactions on Industry Applications, 1977, 13(3): 234-243. [18] J J Carroll, D M Dawson.Integrator backstepping techniques for the tracking control of permanent-magnet brush DC motors. IEEE Transactions on Industry Applications, 1995, 31(2): 248-255. [19] J Shi, H Zhang, X Liu.Novel integrated position measurement unit for stepping motor servo control. Measurement, 2011, 44(1): 80-87. [20] C Verrelli, P Tomei, L Consolini, et al.Space-learning tracking control for permanent magnet step motors. Automatica, 2016, 73: 223-230. [21] S Zhao, S H Hwang.ROS-based autonomous navigation robot platform with stepping motor. Sensors, 2023, 23(7): 3648. [22] C M Verrelli, P Tomei, V Sails, et al.Repetitive learning position control for full order model permanent magnet step motors. Automatica, 2016, 63: 274-286. [23] T Ishikawa, M Matsuda, M Matsunami.Finite element analysis of permanent magnet type stepping motors. IEEE Transations on Magnetics, 1998, 34(5): 3503-3506. [24] T Saolc, A Pochanke.Dynamic investigations of electromechanical coupling effects in the mechanism driven by the stepping motor. Journal of Theoretical and Applied Mechanics, 2012, 50(2): 653-673. [25] M Petronijevic, B Perunicic-Drazenovic, C Milosavljavic, et al.Discrete-time speed servo system design - A comparative study: Proportional-integral versus integral sliding mode control. IET Control Theory and Applications, 2017, 11(16): 2671-2679. [26] F El-Sousy, K Abuhasel.Intelligent adaptive dynamic surface control system with recurrent wavelet Elman neural networks for DSP-based induction motor servo drives. IEEE Transactions on Industry Applications, 2019, 55(2): 1998-2020. [27] M H Park, C Y Won.Time optimal control for induction motor servo system. IEEE Transactions on Power Electronics, 1991, 6(3): 514-524. [28] L Zhou, W Gruber, D L Trumper.Position control for hysteresis motors: Transient-time model and field-oriented control. IEEE Transactions on Industry Applications, 2018, 54(4): 3197-3207. [29] X Gao.Adaptive neural control for hysteresis motor driving servo system with Bouc-Wen model. Complexity, 2018: 9765861. [30] J Fang, H Li, B Han.Torque ripple reduction in BLDC torque motor with nonideal back EMF. IEEE Transactions on Power Electronics, 2012, 27(11): 4630-4637. [31] Y Liu, Z Q Zhu, D Howe.Direct torque control of brushless DC drives with reduced torque ripple. IEEE Transactions on Industry Applications, 2005, 41(2): 599-608. [32] J Lee, G Lim, J Ha.Pulse width modulation methods for minimizing commutation torque ripples in low inductance brushless DC motor drives. IEEE Transactions on Industrial Electronics, 2023, 70(5): 4537-4547. [33] H Qiu, Y Zhang, C Yang, et al.Performance analysis and comparison of PMSM with concentrated winding and distributed winding. Archives of Electrical Engineering, 2020, 69(2): 303-317. [34] K J Lee, S Kim, J Lee, et al.Effect of maximum torque according to the permanent magnet configuration of a brushless DC motor with concentrated winding. Journal of Applied Physics, 2003, 93(10): 8698-8700. [35] M J Jeong, K B Lee, H J Pyo, et al.A study on the shape of the rotor to improve the performance of the spoke-type permanent magnet synchronous motor. Energies, 2021, 14(13): 3758. [36] J Han, Z Zhang.Design and optimization of a low-cost hybrid-pole rotor for spoke-type permanent magnet machine. IEEE Transations on Magnetics, 2022, 58(2): 1-5. [37] Y Ni, Z Liu, B Xiao, et al.Optimum split ratio in surface-mounted permanent magnet machines with pieced halbach magnet array. IEEE Transactions on Energy Conversion, 2020, 35(4): 1877-1885. [38] C Zhang, F Chen, S Qiu, et al.A low detent force DS-PMSLM based on the modulation of cogging and end forces. IEEE Transactions on Industrial Electronics, 2023, 70(1): 721-730. [39] M Hajdinjak, D Miljavec.Analytical calculation of the magnetic field distribution in slotless brushless machines with U-shaped interior permanent magnets. IEEE Transactions on Industrial Electronics, 2020, 67(8): 6721-6731. [40] P Akiki, M H Hassan, M Bensetti, et al.Multiphysics design of a V-shape IPM motor. IEEE Transactions on Energy Conversion, 2018, 33(3): 1141-1153. [41] Y Xiao, Z Q Zhu, G W Jewell, et al.A novel asymmetric interior permanent magnet synchronous machine. IEEE Transactions on Industry Applications, 2022, 58(3): 3370-3382. [42] W Ren, Q Xu, Q Li.Asymmetrical V-shape rotor configuration of an interior permanent magnet machine for improving torque characteristics. IEEE Transations on Magnetics, 2015, 51(11): 8113704. [43] Z Du, T A Lipo.High torque density and low torque ripple shaped-magnet machines using sinusoidal plus third harmonic shaped magnets. IEEE Transactions on Industry Applications, 2019, 55(3): 2601-2610. [44] K Yamazaki, K Utsunomiya, A Tanaka, et al.Rotor surface optimization of interior permanent magnet synchronous motors to reduce both rotor core loss and torque ripples. IEEE Transactions on Industry Applications, 2022, 58(4): 4488-4497. [45] Q Chen, G Xu, G Liu, et al.Reduction of torque ripple caused by slot harmonics in FSCW spoke-type FPM motors by assisted poles. IEEE Transactions on Industrial Electronics, 2020, 67(11): 9613-9622. [46] W Zhao, T A Lipo, B Kwon.Torque pulsation minimization in spoke-type interior permanent magnet motors with skewing and sinusoidal permanent magnet configurations. IEEE Transations on Magnetics, 2015, 51(11): 8110804. [47] Y Du, C Xu, H Chen, et al.Low harmonics design for modular permanent magnet synchronous machine using partitioned winding. IEEE Transactions on Industrial Electronics, 2022, 69(9): 9268-9278. [48] W Zhao, J Zheng, J Ji, et al.Star and delta hybrid connection of a FSCW PM machine for low space harmonics. IEEE Transactions on Industrial Electronics, 2018, 65(12): 9266-9279. [49] J Song, F Dong, J Zhao, et al.An efficient multiobjective design optimization method for a PMSLM based on an extreme learning machine. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1001-1011. [50] R Lin, S D Sudhoff, V C do Nascimento. A multi-physics design method for V-shape interior permanent-magnet machines based on multi-objective optimization. IEEE Transactions on Energy Conversion, 2020, 35(2): 651-661. [51] X Zhu, M Jiang, Z Xiang, et al.Design and optimization of a flux-modulated permanent magnet motor based on an airgap-harmonic-orientated design methodology. IEEE Transactions on Industrial Electronics, 2020, 67(7): 5337-5348. [52] Y Gao, R Qu, D Li, et al.Force ripple minimization of a linear vernier permanent magnet machine for direct-drive servo applications. IEEE Transations on Magnetics, 2017, 53(6): 7001905. [53] F Bu, F Xuan, Z Yang, et al.Rotor position tracking control for low speed operation of direct-drive PMSM servo system. IEEE/ASME Transactions on Mechatronics, 2021, 26(2): 1129-1139. [54] C Zhang, L Zhang, X Huang, et al.Research on the method of suppressing the end detent force of permanent magnet linear synchronous motor based on stepped double auxiliary pole. IEEE Access, 2020, 8: 19799342. [55] K Zhang, L Wang, X Fang.High-order fast nonsingular terminal sliding mode control of permanent magnet linear motor based on double disturbance observer. IEEE Transactions on Industry Applications, 2022, 58(3): 3696-3705. [56] L Xie, J Si, Y Hu, et al.Overview of 2-degree-of-freedom rotary-linear motors focusing on coupling effect. IEEE Transations on Magnetics, 2019, 55(4): 8200611. [57] Q Zhe, Q Wang, L Ju, et al.Torque modeling and control algorithm of a permanent magnetic spherical motor. International Conference on Electrical Machines and Systems, Nov. 15-18, 2009, Tokyo, Japan. 2009: 11084541. [58] Y Zhao, X Ren, X Fan, et al.A high power factor permanent magnet vernier machine with modular stator and yokeless rotor. IEEE Transactions on Industrial Electronics, 2023, 70(7): 7141-7152. [59] R Li, C Shi, R Qu, et al.A novel modular stator fractional pole-pair permanent-magnet vernier machine with low torque ripple for servo applications. IEEE Transactions on Magnetics, 2021, 57(2): 8102406. [60] Z Q Zhu, J Chen, Y Pang, et al.Analysis of a novel multi-tooth flux-switching PM brushless AC machine for high torque direct-drive applications. IEEE Transactions on Magnetics, 2008, 44(11): 4313-4316. [61] H Li, Z Q Zhu, H Hua.Analytical approach for cogging torque reduction in flux-switching permanent magnet machines based on magnetomotive force-permeance model. IEEE Transactions on Industrial Electronics, 2020, 67(7): 5278-5290. [62] K L Hansen. The rotating magnetic field theory of AC motors. Transactions of the American Institute of Electrical Engineers, 1925, XLIV: 340-348. [63] H R West. The cross-field theory of alternating-current machines. Transactions of the American Institute of Electrical Engineers, 1926, XLV: 466-474. [64] R H Park.Two-reaction theory of synchronous machine generalized method of analysis- Part I. Transactions of the American Institute of Electrical Engineers, 1929, 48(3): 716-727. [65] B Adkins, R G Harley.The general theory of alternating current machines. London: Chapman and Hall Ltd., 1975. [66] T A Lipo.Winding distribution in an ideal machine, in analysis of synchronous machine. 2nd ed. Boca Raton: CRC Press, 2012. [67] K Atallah, D Howe.A novel high-performance magnetic gear. IEEE Transactions on Magnetics, 2001, 37(4): 2844-2846. [68] M Cheng, P Han, W Hua.General airgap field modulation theory for electrical machines. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6063-6074. [69] M Cheng, P Han, Y Du, et al.A tutorial on general air-gap field modulation theory for electrical machines. IEEE Journal of Emerging Selected Topics in Power Electronics, 2022, 10(2): 1712-1732. [70] M Cheng, P Han, Y Du, et al.General airgap field modulation theory for electrical machines: Principles and practice. Hoboken: Wiley, 2023. [71] L Xu, W Wu, W Zhao.Airgap magnetic field harmonic synergetic optimization approach for power factor improvement of PM vernier machines. IEEE Transactions on Industrial Electronics, 2022, 69(12): 12281-12291. [72] L Fang, D Li, X Ren, et al.A novel permanent magnet vernier machine with coding-shaped tooth. IEEE Transactions on Industrial Electronics, 2022, 69(6): 6058-6068. [73] I Eguren, G Almandoz, A Egea, et al.Understanding switched-flux machines: A MMF-permeance model and magnetic equivalent circuit approach. IEEE Access, 2022, 10: 6909-6928. [74] J Zhou, M Cheng, H Wen, et al.Modeling and suppression of torque ripple in PMSM based on the general airgap field modulation theory. IEEE Transactions on Power Electronics, 2022, 37(10): 12502-12512. [75] J Zhou, M Cheng, W Yu, et al.Analysis of torque ripple in V-shape interior permanent magnet machine based on general airgap field modulation theory. Energies, 2023, 16: 4586. [76] B Poudel, E Amiri, P Rastgoufard.Analytical investigation and heuristic optimization of surface mounted permanent magnet machines with hybrid magnetic structure. IEEE Open Journal of Industry Applications, 2022, 3: 152-163. [77] W Zhao, Q Hu, J Ji, et al.Torque generation mechanism of dual-permanent-magnet-excited vernier machine by air-gap field modulation theory. IEEE Transactions on Industrial Electronics, 2022, 70(10): 9799-9810. [78] L Xu, Z Sun, W Zhao.Stator core loss analysis and suppression of permanent magnet vernier machines. IEEE Transactions on Industrial Electronics, 2023, 70(12): 12155-12167. [79] L Xu, W Wu, W Zhao.Airgap magnetic field harmonic synergetic optimization approach for power factor improvement of PM vernier machines. IEEE Transactions on Industrial Electronics, 2021, 69(12): 12281-12291. [80] Y Wang, J Ji, W Zhao, et al.Meshless generalized finite difference method to analyze electromagnetic performance of SPM machines with eccentric rotor shape. IEEE Transactions on Industrial Electronics, 2021, 69(12): 12055-12065. [81] D Yan, Z Chen, Z Wang, et al.The torque ripple reduction in PMAREL machine using time-space harmonics analysis of air-gap flux density. IEEE Transactions on Industrial Electronics, 2022, 69(3): 2390-2401. [82] Z K Li, X Y Huang, Z Chen, et al.Electromagnetic analysis for interior permanent-magnet machine using hybrid subdomain model. IEEE Transactions on Energy Conversion, 2022, 37(2): 1223-1232. [83] B Zheng, Z Zhang, D Yan, et al.A direct field-circuit coupled analytical modelling method for permanent magnet motor operation performance analysis. IET Electric Power Applications, 2023, 17(2): 149-160. [84] F Blaschke.The principle of field orientation as applied to the new transvector closed-loop control system for rotating field machines. Siemens Review, 1972, 34(5): 217-219. [85] I Takahashi, Y Ohmori.High-performance direct torque control of an induction motor. IEEE Transactions on Industry Applications, 1987, 25(2): 257-264. [86] I Takahashi, T Noguchi.A new quick-response and high-efficiency control strategy of an induction motor. IEEE Transactions on Industry Applications, 1986, 22(5): 820-827. [87] M Depenbrock.Direct self-control of inverter-fed induction machine. IEEE Transactions on Industry Applications, 1988, 3(4): 420-429. [88] L Harnefors, S E Saarakkala, M Hinkkanen.Speed control of electrical drives using classical control methods. IEEE Transactions on Industry Applications, 2013, 49(2): 889-898. [89] C Xia, B Ji, T Shi, et al.Two-degree-of freedom proportional integral speed control electrical drives with Kalman-filter-based speed estimation. IET Electric Power Applications, 2016, 10(1): 18-24. [90] X Yuan, J Chen, W Liu, et al.A linear control approach to design digital speed control system for PMSMs. IEEE Transactions on Power Electronics, 2022, 37(7): 8596-8610. [91] A K Junejo, W Xu, C Mu, et al.Adaptive speed control of PMSM drive system based a new sliding-mode reaching law. IEEE Transactions on Power Electronics, 2020, 35(11): 12110-12121. [92] S Li, H Gu.Fuzzy adaptive internal model control schemes for PMSM speed-regulation system. IEEE Transactions on Industrial Informatics, 2012, 8(4): 767-779. [93] Z Li, F Wang, D Ke, et al.Robust continuous model predictive speed and current control for PMSM with adaptive integral sliding-mode approach. IEEE Transactions on Power Electronics, 2021, 36(12): 14398-14408. [94] Y Wang, Y Feng, X Zhang, et al.A new reaching law for antidisturbance sliding-mode control of PMSM speed regulation system. IEEE Transactions on Power Electronics, 2020, 35(4): 4117-4126. [95] X Yu, B Zhou, L Xiong, et al.Composite sliding mode speed control for sinusoidal doubly salient electromagnetic machine drives using fast reaching law and disturbance compensation. IEEE Transactions on Industrial Electronics, 2023, 70(7): 6563-6573. [96] H Mesloub, R Boumaaraf, M T Benchouia, et al.Comparative study of conventional DTC and DTC_SVM based control of PMSM motor: Simulation and experimental results. Mathematics and Computers in Simulation, 2020, 147: 296-307. [97] J Rodriguez, R M Kennel, J R Espinoza, et al.High-performance control strategies for electrical drives: An experimental assessment. IEEE Transactions on Industrial Electronics, 2012, 59(7): 812-820. [98] Y Zhang, J Zhu, W Xu, et al.A simple method to reduce torque ripple in direct torque-controlled permanent-magnet synchronous motor by using vectors with variable amplitude and angle. IEEE Transactions on Industrial Electronics, 2011, 58(7): 2848-2859. [99] S Mohammed, H H Choi, J W Jung.Improved iterative learning direct torque control for torque ripple minimization of surface-mounted permanent magnet synchronous motor drives. IEEE Transactions on Industrial Informatics, 2021, 17(11): 7291-7303. [100] M H Holakooie, G Iwanski, T Miazga.Switching-table-based direct torque control of six-phase drives with x-y current regulation. IEEE Transactions on Industrial Electronics, 2022, 69(12): 11890-11902. [101] A Nasr, C Y Gu, S Bozhko, et al.Performance enhancement of direct torque-controlled permanent magnet synchronous motor with a flexible switching table. Energies, 2020, 13(8): 1907. [102] T Li, X Sun, G Lei, et al.Finite-control-set model predictive control of permanent magnet synchronous motor drive systems: An overview. IEEE/CAA Journal of Automatica Sinica, 2022, 12(9): 2087-2105. [103] J Peng, M Yao.Overview of predictive control technology for permanent magnet synchronous motor systems. Applied Sciences, 2023, 13(10): 6255. [104] C A Rojas, J Rodriguez, F Villarroel, et al.Predictive torque and flux control without weighting factors. IEEE Transactions on Industrial Electronics, 2013, 60(2): 681-690. [105] X Tian, Y Cai, X Sun, et al.A novel energy management strategy for plug-in hybrid electric buses based on model predictive control and estimation of distribution algorithm. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 4350-4361. [106] Y Zhang, D Xu, J Liu, et al.Performance improvement of model-predictive current control of permanent magnet synchronous motor drives. IEEE Transactions on Industry Applications, 2017, 53(4): 3683-3695. [107] Y Zhang, D Xu, L Huang.Generalized multiple-vector-based model predictive control for PMSM drives. IEEE Transactions on Industrial Electronics, 2018, 65(12): 9356-9366. [108] C Jia, X Wang, Y Liang, et al.Robust current controller for IPMSM drives based on explicit model predictive control with online disturbance observer. IEEE Access, 2019, 7: 45898-45910. [109] T Orlowska-Kowalska, M Wolkiewicz, P Pietrzak, et al.Fault diagnosis and fault-tolerant control of PMSM drives: State of the art and future challenges. IEEE Access, 2022, 10: 59979-60024. [110] E G Strangas, S Aviyente, S Zaidi.Time-frequency analysis for efficient fault diagnosis and failure prognosis for interior permanent magnet AC motors. IEEE Transactions on Industrial Electronics, 2008, 55(12): 4191-4199. [111] E G Strangas, S Aviyente, J Neely, et al.The effect of failure prognosis and mitigation on the reliability of permanent magnet AC motor drives. IEEE Transactions on Industrial Electronics, 2013, 60(8): 3519-3528. [112] J Hang, J Zhang, M Cheng, et al.High-resistance connection detection in permanent magnet synchronous machine using zero-sequence current component. IEEE Transactions on Power Electronics, 2016, 31(7): 4710-4719. [113] P Naderi, A Fathi.Fault diagnosis/separation of surface mounted permanent magnet synchronous machine by current and its homopolar orders analysis. IEEE Transactions on Energy Conversion, 2023, 38(2): 1246-1256. [114] J Hang, Q Hu, W Sun, et al.A voltage-distortion-based method for robust detection and location of interturn fault in permanent magnet synchronous machine. IEEE Transactions on Power Electronics, 2022, 37(9): 11174-11186. [115] S C Athikessavan, E Jeyasankar, S K Panda.Inter-turn fault detection of induction motors using end-shield leakage fluxes. IEEE Transactions on Energy Conversion, 2022, 37(4): 2260-2270. [116] J Faiz, H Nejadi-Koti.Demagnetization fault indexes in permanent magnet synchronous motors: An overview. IEEE Transactions on Magnetics, 2016, 52(4): 1-11. [117] D Fonseca, C Santos, A Cardoso.Stator faults modeling and diagnostics of line-start permanent magnet synchronous motors. IEEE Transactions on Industry Applications, 2020, 56(3): 2590-2599. [118] J Zhang, Z Xu, J Wang, et al.Detection and discrimination of incipient stator faults for inverter-fed permanent magnet synchronous machines. IEEE Transactions on Industrial Electronics, 2021, 68(8): 7505-7515. [119] J Hang, J Zhang, M Xia, et al.Interturn fault diagnosis for model-predictive-controlled-PMSM based on cost function and wavelet transform. IEEE Transactions on Power Electronics, 2020, 35(6): 6405-6418. [120] B Vaseghi, N Takorabet, F Meibody-Tabar.Fault analysis and parameter identification of permanent-magnet motors by the finite-element method. IEEE Transactions on Magnetics, 2009, 45(9): 3290-3295. [121] C Attaianese, M D’Arpino, M D Monaco, et al.Model-based detection and estimation of DC offset of phase current sensors for field oriented PMSM drives. IEEE Transactions on Industrial Electronics, 2023, 70(6): 6316-6325. [122] E Bhuiyan, M Akahand, S Das, et al.A survey on fault diagnosis and fault tolerant methodologies for permanent magnet synchronous machines. International Journal of Automation and Computing, 2020, 17(6): 763-787. [123] M Cheng, J Hang, J Zhang.Overview of fault diagnosis theory and method for permanent magnet machine. Chinese Journal of Electrical Engineering, 2015, 1(1): 21-36. [124] M Verhaegen, S Kanev, R Hallouzi, et al.Fault tolerant flight control: A survey in fault tolerant flight control. Berlin: Springer, 2010. [125] S Huang, A Aggarwal, E Strangas, et al.Mitigation of interturn short-circuits in IPMSM by using MTPCC control adaptive to fault severity. IEEE Transactions on Power Electronics, 2022, 37(4): 4685-4696. [126] W Zhang, D Xu, P Enjeti, et al.Survey on fault-tolerant techniques for power electronic converters. IEEE Transactions on Power Electronics, 2014, 29(12): 6319-6331. [127] J Zhang, W Zhan, M Ehsani.Fault-tolerant control of PMSM with inter-turn short-circuit fault. IEEE Transactions on Energy Conversion, 2019, 34(4): 2267-2275. [128] X Wang, Z Wang, Z Xu, et al.Comprehensive diagnosis and tolerance strategies for electrical faults and sensor faults in dual three-phase PMSM drives. IEEE Transactions on Industrial Electronics, 2019, 34(7): 6669-6684. [129] M S Rafaq, J Jung.A comprehensive review of state-of-the-art parameter estimation techniques for permanent magnet synchronous motors in wide speed range. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4747-4758. [130] N Imai, S Morimoto, M Sanada, et al.Influence of magnetic saturation on sensorless control for interior permanent-magnet synchronous motors with concentrated windings. IEEE Transactions on Industry Applications, 2006, 42(5): 1193-1200. [131] C Jing, Y Yan, S Lin, et al.A novel moment of inertia identification strategy for permanent magnet motor system based on integral chain differentiator and Kalman filter. Energies, 2021, 14(1): 166. [132] W Lu, B Tang, K Ji, et al.A new load adaptive identification method based on an improved sliding mode observer for PMSM position servo system. IEEE Transactions on Power Electronics, 2021, 36(3): 3211-3223. [133] S Liu, Q Wang, G Wang, et al.Virtual-axis injection based online parameter identification of PMSM considering cross coupling and saturation effects. IEEE Transactions on Power Electronics, 2023, 38(5): 5791-5802. [134] Z Q Zhu, D Liang, K Liu.Online parameter estimation for permanent magnet synchronous machines: An overview. IEEE Access, 2021, 9: 59059-59084. [135] Q Wang, G Zhang, G Wang, et al.Offline parameter self-learning method for general-purpose PMSM drives with estimation error compensation. IEEE Transactions on Power Electronics, 2019, 34(11): 11103-11115 [136] X Wu, X Fu, M Lin, et al.Off-line inductance identification of IPMSM with sequence-pulse injection. IEEE Transactions on Industrial Informatics, 2019, 15(11): 6127-6135. [137] K Liu, J Feng, S Guo, et al.Identification of flux linkage map of permanent magnet synchronous machines under uncertain circuit resistance and inverter nonlinearity. IEEE Transactions on Industrial Informatics, 2018, 14(2): 556-568. [138] S A Odhano, R Bojoi, E Armando, et al.Identification of three-phase IPM machine parameters using torque tests. IEEE Transactions on Industry Applications, 2017, 53(3): 1883-1891. [139] N Leboeuf, T Boileau, B N Mobarakeh, et al.Estimating permanent-magnet motor parameters under interturn fault conditions. IEEE Transactions on Magnetics, 2012, 48(2): 963-966. [140] Y Yu, X Huang, Z Li, et al.Full parameter estimation for permanent magnet synchronous motors. IEEE Transactions on Industrial Electronics, 2021, 69(5): 4376-4386. [141] M Rafaq, S Mohammed, J Jung.Online multiparameter estimation for robust adaptive decoupling PI controllers of an IPMSM drive: Variable regularized APAs. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 1386-1395. [142] Y Zhou, S Zhang, C Zhang, et al.Current prediction error based parameter identification method for SPMSM with deadbeat predictive current control. IEEE Trans- actions on Energy Conversion, 2021, 36(3): 1700-1710. [143] W Xu, Y Tang, D Dong, et al.Improved deadbeat predictive thrust control for linear induction machine with online parameter identification based on MRAS and linear extended state observer. IEEE Transactions on Industry Applications, 2023, 59(3): 3186-3199. [144] M Hamida, J De Leon, A Glumineau, et al.Online stator inductance estimation for permanent magnet motors using PWM excitation. IEEE Transactions on Industrial Electronics, 2019, 5(1): 107-117. [145] Y Feng, X Yu, F Han.High-order terminal sliding-mode observer for parameter estimation of a permanent-magnet synchronous motor. IEEE Transactions on Industrial Electronics, 2013, 60(10): 4272-4280. [146] Y Yan, J Yang, Z Sun, et al.Robust speed regulation for PMSM servo system with multiple sources of disturbances via an augmented disturbance observer. IEEE/ASME Transactions on Mechatronics, 2018, 23(2): 769-780. [147] S Gao, H Dong, B Ning, et al.Nonlinear mapping-based feedback technique of dynamic surface control for the chaotic PMSM using neural approximation and parameter identification. IET Control Theory Applications, 2018, 12(6): 819-827. [148] G Lin, J Zhang, Z Liu.Parameter identification of PMSM using immune clonal selection differential evolution algorithm. Mathematical Problems in Engineering, 2014: 160685. [149] W Liu, L Liu, I Chung, et al.Real-time particle swarm optimization based parameter identification applied to permanent magnet synchronous machine. Applied Soft Computing, 2011, 11(2): 2556-2564. [150] Y Fan, J L Chen, Q S Zhang, et al.An improved inertia disturbance suppression method for PMSM based on disturbance observer and two-degree-of-freedom PI controller. IEEE Transactions on Power Electronics, 2023, 38(3): 3590-3599. [151] S Lin, Y Cao, C Li, et al.Two-degree-of-freedom active disturbance rejection current control for permanent magnet synchronous motors. IEEE Transactions on Power Electronics, 2022, 38(3): 3640-3652. [152] M Hu, W Hua, Z Wang, et al.Selective periodic disturbance elimination using extended harmonic state observer for smooth speed control in PMSM drives. IEEE Transactions on Power Electronics, 2022, 37(11): 13288-13298. [153] H Cao, Y Deng, H Li, et al.Generalized active disturbance rejection with reduced-order vector resonant control for PMSM current disturbances suppression. IEEE Transactions on Power Electronics, 2023, 38(5): 6407-6421. [154] M Cheng, W Qin, X Zhu, et al.Magnetic-inductance: Concept, definition, and applications. IEEE Transactions on Power Electronics, 2022, 37(10): 12406-12414. [155] W Qin, M Cheng, J Wang, et al.Compatibility analysis among vector magnetic circuit theory, electrical circuit theory and electromagnetic field theory. IEEE Access, 2023, 11: 113008-113016. [156] W Qin, M Cheng, Z Wang, et al. Vector magnetic circuit theory and its preliminary applications. Proceedings of the CSEE: 1-14[2023-11-07]. https://link.cnki.net/urlid/11.2107.tm.20231103.1033.002. [157] Z Wang, C Gao, M Gu, et al.A novel vector magnetic circuit based position observer for IPMSM drives using high-frequency signal injection. IEEE Transactions on Power Electronics, 2024, 39(1): 1333-1342. [158] Z Wang, M Gu, M Cheng, et al.Modeling and predictive control of PMSM considering eddy-current reaction by vector magnetic circuit theory. IEEE Transactions on Industrial Electronics, 2023, DOI: 10.1109/TIE.2023. 3325569. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||