[1] J Ouyang, M Li, Z Zhang, et al.Multi-timescale active and reactive power-coordinated control of large-scale wind integrated power system for severe wind speed fluctuation.IEEE Access, 2019, 7: 51201-51210. [2] M B Ozkan, P Karagoz.Data mining-based upscaling approach for regional wind power forecasting: Regional statistical hybrid wind power forecast technique (Regional SHWIP).IEEE Access, 2019, 7: 171790-171800. [3] L Wang, H Li, S Fang.The model of wind power short-term prediction based on artificial fish swarm algorithm of support vector machine.Journal of Electrical Engineering, 2016, 11(10): 7-12. [4] P Chen, Q Meng, Y Zhao.The electric vehicle charging load calculation based on the Monte Carlo method.Journal of Electrical Engineering, 2016, 11(11): 40-46. [5] S Zhu,M Yang,X Han,et al.Joint probability density forecast of short-term multiple wind farms output power.Automation of Electric Power Systems, 2014, 38(19): 8-15. [6] J Yan,Y Liu,S Han,et al.Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine.Renewable & Sustainable Energy Reviews, 2013, 27(6): 613-621. [7] L Wang,H Li,X Wu, et al.Wind power chaotic time series prediction model based on improved local Volterra adaptive filter.Electric Power Automation Equipment, 2016, 36(8): 40-44. [8] W Wu, Y Qiao, Z Lu, et al.Methods and prospects for probabilistic forecasting of wind power.Automation of Electric Power Systems, 2017, 41(18): 167-175. [9] C Wan, J Lin, J Wang, et al.Direct quantile regression for nonparametric probabilistic forecasting of wind power generation.IEEE Transactions on Power Systems, 2017, 32(4): 2767-2778. [10] P Pinson.Very-short-term probabilistic forecasting of wind power with generalized logit-normal distributions.Journal of the Royal Statistical Society, Series C (Applied Statistics), 2021, 61(4): 555-576. [11] W Can, X Zhao, P Pinson.Probabilistic forecasting of wind power generation using extreme learning machine.IEEE Trans. Power Systems, 2014, 29(3): 1033-1044. [12] F Lan, C Sang, J Liang, et al.Interval prediction for wind power based on conditional copula function.Proceedings of the CSEE, 2016, 36(S1): 79-86. [13] X Yang, X Ma, N Kang, et al.Probability interval prediction of wind power based on KDE method with rough sets and weighted Markov chain.IEEE Access, 2018, 6: 51556-51565. [14] W Wu, K Chen, Y Qiao, et al.Probabilistic short-term wind power forecasting based on deep neural networks. 2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Beijing, 2016: 1-8. [15] J W Taylor.A quantile regression neural network approach to estimating the conditional density of multiperiod returns.Journal of Forecasting, 2000, 19(4): 299-311. [16] Y He, H Li.Probability density forecasting of wind power using quantile regression neural network and kernel density estimation.Energy Conversion and Management, 2018, 14(4): 374-384. [17] A van den Oord, S Dieleman, H Zen, et al. WaveNet: A generative model for raw audio. arXiv:1609.03499v2. 2016-09-19. https://doi.org/10.48550/arXiv.1609.03499. [18] G Kechyn, L Yu, Y Zang, et al. Sales forecasting using WaveNet within the framework of the Kaggle competition. arXiv:1803.04037v1[cs.LG]. 2018-03-11. https://doi.org/10.48550/arXiv.1803.04037. [19] A Borovykh, S Bohte, C W Oosterlee. Conditional time series forecasting with convolutional neural networks. arXiv:1703.04691v3[stat.ML]. 2017-10-16. https://doi.org/10.48550/arXiv.1703.04691. |