[1] Z Q Zhu, D Howe.Electrical machines and drives for electric, hybrid and fuel cell vehicles.Proc. IEEE, 2007, 95(4): 746-765.
[2] M Cheng, W Hua, J Zhang, et al.Overview of stator-permanent magnet brushless machines.IEEE Trans. Ind. Electron., 2011, 58(11): 5087-5101.
[3] J Zheng, W Zhao, J Ji, et al.Sleeve design of permanent-magnet machine for low rotor losses.Chinese Journal of Electrical Engineering, 2020, 6(4): 86-96.
[4] I Boldea, L N Tutelea, L Parsa, et al.Automotive electric propulsion systems with reduced or no permanent magnets: An overview.IEEE Trans. Ind. Electron., 2014, 61(10): 5696-5711.
[5] M L Bash, S D Pekarek.Modeling of salient-pole wound-rotorsynchronous machines for population-based design.IEEE Trans. Energy Convers., 2011, 26(2): 381-392.
[6] M Ma, Z Wang, Q Yang, et al.Vector control strategy of a T-type three-level converter driving a switched reluctance motor.Chinese Journal of Electrical Engineering, 2019, 5(4): 15-21.
[7] C Pollock, M Wallace.The flux switching motor, a DC motor without magnets or brushes.Conf. Rec. IEEE IAS Annu. Meeting, 1999(3): 1980-1987.
[8] J T Chen, Z Q Zhu, S Iwasaki, et al.Low cost flux-switching brushless AC machines.Proc. Conf.Veh. Pow. Prop., Lille, France, Sep., 2010: 1-6.
[9] Y Tang, J J H Paulides, T E Motoasca, et al. Flux switching machine with DC excitation.IEEE Trans. Magn., 2012, 48(11): 3583-3586.
[10] T Fukami, Y Matsuura, K Shima, et al.A multi-pole synchronous machine with nonoverlapping concentrated armature and field winding on the stator.IEEE Trans. Ind. Electron., 2012, 59(6): 2583-2591.
[11] A Zulu, B Mecrow, M Armstrong.A wound-field three-phase flux-switching synchronous motor with all excitation sources on the stator.IEEE Trans. Ind. Appl., 2010, 46(6): 2363-2371.
[12] B Gaussens, E Hoang, O de la Barrière, et al. Analytical armature reaction field prediction in field-excited flux-switching machines using an exact relative permeance function.IEEE Trans. Magn., 2013, 49(1): 628-641.
[13] E Sulaiman, T Kosaka, N Matsui.Design study and experimental analysis of wound field flux switching motor for HEV applications.Proc. IEEE Inter. Conf. Elec. Mach., Marseille, France, Sep., 2012: 1269-1275.
[14] T Raminosoa, A M El-Refaie, D Pan, et al. Reduced rare-earth flux-switching machines for traction applications.IEEE Trans. Ind. Appl., 2015, 51(4): 2959-2971.
[15] Y Wang, Z Q Deng.A position sensorless method for direct torque control with space vector modulation of hybrid excitation flux-switching generator.IEEE Trans. Energy Convers., 2012, 27(4): 912-921.
[16] U B Akuru, M J Kamper.Formulation and multiobjective design optimization of wound-field flux switching machines for wind energy drives.IEEE Trans. Ind. Electron., 2018, 65(2): 1828-1836.
[17] X Li, S Liu, Y Wang.Design and analysis of a new HTS dual-rotor flux-switching machine.IEEE Trans. Applied Supercon., 2017, 27(4): 1-5.
[18] X Li, X Wang, Y Wang.Design and analysis of a new HTS linear flux-controllable doubly salient machine.IEEE Trans. Appl. Supercond., 2019, 29(5): 5201605.
[19] Y Wang, W Xu, X Zhang, et al.Harmonic analysis of air gap magnetic field in flux-modulation double-stator electrical-excitation synchronous machine.IEEE Trans. Ind. Electron., 2020, 67(7): 5302-5312.
[20] Y Xu, Z Zhang, Z Bian, et al.Copper loss optimization based on bidirectional converter for doubly salient brushless starter/generator system.IEEE Trans. Ind. Electron., 2021, 68(6): 4769-4779.
[21] W Jiang, W Huang, X Lin, et al.Analysis of rotor poles and armature winding configurations combinations of wound field flux switching machines.IEEE Trans. Ind. Electron., 2021, 68(9): 7838-7849.
[22] Y Xu, Z Zhang, Z Bian, et al.Advanced angle control for active rectifier in doubly salient electromagnetic generator system.IEEE Trans. Ind. Electron., 2021, 68(7): 5672-5682.
[23] M Cheng, P Han, W Hua.General airgap field modulation theory for electrical machines.IEEE Trans. Ind. Electron., 2017, 64(8): 6063-6074.
[24] S Jia, R Qu, J Li, et al.Principles of stator DC winding excited Vernier reluctance machines.IEEE Trans. Energy Convers, 2016, 31(3): 935-946.
[25] Z Z Wu, Z Q Zhu.Analysis of air-gap field modulation and magnetic gearing effects in switched flux permanent magnet machines.IEEE Trans. on Magn., 2015, 51(5): 8105012.
[26] Z Q Zhu.Overview of novel magnetically geared machines with partitioned stators.IET Electr. Power Appl., 2018, 12(5): 595-604.
[27] K Atallah, D Howe.A novel high-performance magnetic gear.IEEE Trans. Magn., 2001, 37(4): 2844-2846.
[28] Z Q Zhu, Z Z Wu, D J Evans, et al.A wound field switched flux machine with field and armature windings separately wound in double stators.IEEE Trans. Energy Convers, 2015, 30(2): 772-783.
[29] Z Wu, Z Q Zhu.Torque improvement in partitioned stator wound field switched flux machine by using assisted ferrites.Proc. Intermag., Singapore, Singapore, 23-27 April, 2018: 1-1. DOI: 10.1109/INTMAG.2018.8508527.
[30] S Li, Y Li, B Sarlioglu.Partial irreversible demagnetization assessment of flux-switching permanent magnet machine using ferrite permanent magnet material.IEEE Trans. Magn., 2015, 51(7): 8106209.
[31] G Qi, J T Chen, Z Q Zhu, et al.Influence of skew and cross-coupling on flux-weakening performance of permanent-magnet brushless AC machines.IEEE Trans. Magn., 2009, 45(5): 2110-2117.
[32] Z Z Wu, Z Q Zhu.Comparative analysis of end effect in partitioned stator flux reversal machines having surface-mounted and consequent pole permanent magnets.IEEE Trans. Magn., 2016, 52(7): 8103904. |