[1] M. Cheng, W. Hua, J. Zhang,W. Zhao, “Overview of statorpermanent magnet brushless motors,” IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 5087-5101, Nov. 2011. [2] Y. Wang, W. Fu, S. Niu,Xingjian Li, “A novel stator and rotor dual PM flux modulated machine,” Chinese Journal of Electrical Engineering, vol. 3, no. 1, pp. 10-15, Jul. 2017. [3] K. I. Laskaris,A. G. Kladas, “Internal permanent magnet motor design for electric vehicle drive,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 138-145, Jan. 2010. [4] R. Cao, C. Mi,M. Cheng, “Quantitative comparison of fluxswitching permanent-magnet motors with interior permanent magnet motor for EV, HEV and PHEV applications,” IEEE Trans. Magn., vol. 48, no. 8, pp. 2374-2384, Aug. 2012. [5] P. Taras, G. Li,Z. Q. Zhu, “Comparative study of faulttolerant switched-flux permanent magnet motors,” IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 1939-1948, Mar. 2017. [6] W. Zhao, T. Lipo, and B. Kwon, “A novel dual-rotor, axial field, fault-tolerant flux-switching permanent magnet motor with high-torque performance,” IEEE Trans. Magn., vol. 51, no. 11, Nov. 2015. Art. ID. 8112204. [7] C. H. T.Lee, K. T. Chau, and C. Chan, “Comparison of fluxswitching machines with and without permanent magnets,” Chinese Journal of Electrical Engineering, vol. 1, no. 2, pp. 78-84, Dec. 2015. [8] G. Zhang, W. Hua,M. Cheng, “Rediscovery of permanent magnet flux-switching machines applied in EV/HEVs: Summary of new topologies and control strategies,” Chinese Journal of Electrical Engineering, vol. 2, no. 2, pp. 31-42, Dec. 2016. [9] C. Yu,S. Niu, “Development of a magnteless flux switching machine for rooftop wind power generation,” IEEE Trans. Energy. Convers., vol. 30, no. 4, pp. 1703-1711, Sep. 2015. [10] Y. Liu, S. Niu, W. N. Fu, “A novel multiphase brushless power-split transmission system for wind power generation,” IEEE Trans. Magn., vol. 52, no. 2, pp. 1-7, Feb. 2016. [11] W. Zhao, M. Cheng, W. Hua,H. Jia, “Back-EMF harmonic analysis and fault-tolerant control of flux-switching permanentmagnet motor with redundancy,” IEEE Trans. Ind. Electron., vol. 51, no. 11, pp. 1926-1935, May 2011. [12] D. G. Dorrell, M. F. Hsieh,A. M. Kmight, “Alternative rotor designs for high performance brushless permanent magnet motors for hybrid electric vehicles,” IEEE Tran. Magn., vol. 48, no. 2, pp. 835-838, Feb. 2012. [13] W. Cao, B. C. Mecrow, G. J. Atkinson, J. W. Bennett,D. J. Atkinson, “Overview of electric motor technologies used for more electric aircraft(MEA),” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3253-3531, Sep. 2012. [14] L. D. Lillo, L. Empringham, P. W. Wheeler, S. Khwan-On, C. Gerada, M. N. Othman,X. Huang, “Multiphase power converter drive for fault-tolerant motor development in aerospace applications,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 575-583, Feb. 2010. [15] T. Raminosoa, C. Gerada,M. Galea, “Design consideration for a fault-tolerant flux-switching permanent magnet motor,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2818-2825, Jul. 2011. [16] A. S.Abdel-khalik, M. A. Elgenedy, S. Ahmed, and A. M. Massoud, “An improved fault-tolerant five-phase induction motor using a combined star/pentagon single layer stator winding connection,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 618-628, Jan. 2016. [17] A. S. Thomas, Z. Q. Zhu,G. W. Jewell, “Comparison of flux switching and surface mounted permanent magnet generators for high-speed applications,” IET Electr. Syst. Transp., vol. 1, no. 3, pp. 111-116, Sep. 2011. [18] L. Xu, G. H. Liu, W. X. Zhao, X. Y. Yang,R. Cheng, “Hybrid stator design of fault-tolerant permanent-magnet vernier motors for direct-drive applications,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 179-190, Jan. 2017. [19] L. Xu, G. H. Liu, W. X. Zhao, J. H. Ji,X. Fan, “Highperformance fault tolerant halbach permanent magnet Vernier motors for safety-critical applications,” IEEE Tran. Magn., vol. 52 no. 7, 8104704, Jul. 2016. [20] X. Xue, W. Zhao, J. Zhu, G. Liu, X. Zhu,M. Cheng, “Design of five-phase modular flux-switching permanent-magnet motors for high reliability applications,” IEEE Trans. Magn., vol. 49, no. 7, pp. 3941-3944, Jul. 2013. [21] Y. M. Mao, G. H. Liu. W. Zhao,J. Ji, “Vibration prediction in fault-tolerant flux-switching permanent-magnet motor under healthy and faulty conditions,” IET Electr. Power Appl., vol. 11, no. 1, pp. 19-28, Jan. 2017. [22] Y. Kai, Y. Shi, Y. Xu,R. D. Lorenz, “A comparative overview of indirect field oriented control(IFOC) and deadbeatdirect torque and flux control(DB-DTFC) for AC motor drives,” Chinese Journal of Electrical Engineering, vol. 1, no. 1, pp. 9-20, Dec. 2015. [23] M. S. Rafaq, F. Mwasilu, J. kim, H. C. Han, and J. W. Jung, “Online parameter identification for model-based sensorless control of interior permanent magnet synchronous machine,” 56 IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4631-4643, Jun. 2017. [24] P. L. Xu,Z. Q. Zhu, “Initial rotor estimation using zerosequence carrier voltage for permanent magnet synchronous machines,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 149- 158, Jan. 2017. [25] F. Wang, X. Mei, P. Tao, Ralph Kennel, and Jose Rodriguez, “Predictive field-oriented control for electric drives,” Chinese Journal of Electrical Engineering, vol. 3, no. 1, pp. 73-78, Jul. 2017. [26] Y. N. Tatte,M. V. Aware, “Torque ripple and harmonic reduction in a three-level inverter-fed direct-torque-controlled five-phase induction motor,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5265-5275, Jul. 2017. [27] A. H. Abosh, Z. Q. Zhu,Y. Ren, “Reduction of torque and flux ripples in space vector modulation-based direct torque control of asymmetric permanent magnet8 synchronous machine,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2976-2986, Apr. 2017. [28] Y. Fan, L. Zhang, M. Cheng,K. T. Chau, “Sensorless SVPWM-FADTC of a new flux modulated permanent-magnet wheel motor based on a wide-speed sliding mode observer,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3143-3151, May 2015. [29] T. D. Nguyen, G. Foo, K. J. Tseng,D. M. Vilathgamuwa, “Modeling and sensorless direct torque and flux control of a dual-airgap axial flux permanent-magnet motor with field weakening operation,” IEEE/ASME Trans. Mechatron., vol. 19, no. 2, pp. 412-422, Apr. 2014. |